Documento no encontrado! Por favor, inténtelo de nuevo

Presentación de PowerPoint - Banco Central de Reserva de El Salvador

26 nov. 2014 - ideales lineales y cuadráticos. 4. Base de datos. 5. Evidencia empírica: El ...... (1) Mínimos Cuadrados Ordinarios (OLS). (2) Método General de ...
2MB Größe 6 Downloads 59 vistas
Red de Investigadores del Banco Central de Reserva de El Salvador REDIBACEN

“Elasticidades ingreso y precio de la demanda de electricidad y gasolinas en El Salvador: Análisis con micro-datos” Elaborado por: Luis Miguel Galindo, Luis Adalberto Aquino, Karina Caballero, Alirio Alfonso Hernández

26 de noviembre de 2014

Índice 1. Introducción 2. Antecedentes 3. Marco teórico: Curvas de Engel y modelos de demanda casi ideales lineales y cuadráticos

4. Base de datos 5. Evidencia empírica: El caso de El Salvador 5.1 Demanda de electricidad y gasolinas: Series de tiempo 5.2 Demanda de electricidad y gasolinas: Datos de sección cruzada 5.2.1 El consumo de gasolinas 5.2.2 El consumo de electricidad 6. Consideraciones finales y recomendaciones

1. Introducción

 El consumo de electricidad y gasolinas es un insumo fundamental en las economías modernas  Externalidades negativas: contaminación atmosférica, costos relacionados con accidentes o congestión vehicular  Efectos colaterales: competitividad, finanzas públicas, inflación, etc.

 Políticas públicas  Aprovechar bases de datos

Rama de actividad económica Gasolina y Electricidad en los costos de producción En porcentaje del VBP Combustibles 1. CAFE ORO 3.0 2. ALGODON 2.8 3. GRANOS BASICOS 0.4 4. CAÑA DE AZUCAR 1.4 5. OTRAS PRODUCCIONES AGRICOLAS 6.0 6. GANADERIA 0.9 7. AVICULTURA 0.8 8. SILVICULTURA 0.0 9. PROD. DE LA CAZA Y LA PESCA 5.5 10. PROD. DE LA MINERIA 2.7 11. CARNE Y SUS PRODUCTOS 0.4 12. PRODUCTOS LACTEOS 0.5 13. PROD. ELABORADOS DE LA PESCA 0.2 14. PROD. DE MOLINERIA Y PANADERIA 0.7 15. AZUCAR 13.4 16. OTROS PROD. ALIM. ELABORADOS 3.6 17. BEBIDAS 3.0 18. Tabaco Elaborado 0.0 19. TEXTILES Y ART. CONFEC. DE MAT. TEXT. 5.1 20. PRENDAS DE VESTIR 1.7 21. CUERO Y SUS PRODUCTOS 1.7 22. MADERA Y SUS PRODUCTOS 1.6 23. PAPEL, CARTON Y SUS PRODUCTOS 0.2 24. PROD. DE LA IMPRENTA Y DE IND. CONEX. 0.5 25. QUIMICA DE BASE Y ELABORADOS 1.5 26. PROD. DE LA REFINACION DE PETROLEO 2.2 27. PROD. DE CAUCHO Y PLASTICO 2.2 28. PROD. MINERALESS NO METALICOS ELAB. 15.5 29. PROD. METALICOS DE BASE Y ELAB. 2.2 30. MAQUINARIA, EQUIPOS Y SUMINISTROS 1.9 31. MATERIAL DE TRANSP. Y MANUF. DIVERSAS 1.4 32. ELECTRICIDAD 25.6 33. AGUA Y ALCANTARILLADOS 2.6 34. CONSTRUCCION 2.9 35. COMERCIO 2.7 36. RESTAURANTES Y HOTELES 0.8 37. TRANSP. Y ALMACENAMIENTO 18.6 38. COMUNICACIONES 2.0 39. BANCOS, SEGUROS, OTRAS INST. FINANC. 0.0 40. BIENES INMUEBLES Y SERV. PRESTADOS 1.5 41. ALQUILERES DE VIVIENDA 0.0 42. SERV. COMUNALES, SOCIALES Y PERS. 3.3 43. SERVICIOS DOMESTICOS 0.0 44. SERVICIOS DEL GOBIERNO 1.1

Electricidad 1.2 0.7 0.0 0.0 0.0 0.1 0.8 0.0 0.5 2.0 0.2 0.0 0.0 0.6 9.7 2.5 1.4 0.0 9.7 1.2 1.9 0.7 0.1 1.0 1.3 0.0 4.6 7.3 2.2 1.3 2.1 0.4 46.2 0.1 1.0 0.9 0.3 2.6 0.5 0.6 0.0 1.6 0.0 2.0

Las industrias demandan insumos de Gasolina y de Electricidad en sus procesos de producción

Gasolina y Electricidad en relación al consumo intermedio de cada rama En porcentaje Combustibles Electricidad 1. CAFE ORO 13.9 5.6 2. ALGODON 5.8 1.5 3. GRANOS BASICOS 1.2 0.0 4. CAÑA DE AZUCAR 2.4 0.0 5. OTRAS PRODUCCIONES AGRICOLAS 39.5 0.0 6. GANADERIA 2.7 0.4 7. AVICULTURA 1.2 1.2 8. SILVICULTURA 0.0 0.0 9. PROD. DE LA CAZA Y LA PESCA 11.6 1.1 10. PROD. DE LA MINERIA 8.4 6.3 11. CARNE Y SUS PRODUCTOS 0.8 0.3 12. PRODUCTOS LACTEOS 0.9 0.0 13. PROD. ELABORADOS DE LA PESCA 0.3 0.0 14. PROD. DE MOLINERIA Y PANADERIA 1.4 1.2 15. AZUCAR 19.1 13.8 16. OTROS PROD. ALIM. ELABORADOS 6.7 4.7 17. BEBIDAS 9.2 4.1 18. Tabaco Elaborado 0.0 0.0 19. TEXTILES Y ART. CONFEC. DE MAT. TEXT. 6.4 12.2 20. PRENDAS DE VESTIR 2.9 2.1 21. CUERO Y SUS PRODUCTOS 3.3 3.8 22. MADERA Y SUS PRODUCTOS 4.5 2.1 23. PAPEL, CARTON Y SUS PRODUCTOS 0.3 0.1 24. PROD. DE LA IMPRENTA Y DE IND. CONEX. 1.1 2.1 25. QUIMICA DE BASE Y ELABORADOS 2.4 2.0 26. PROD. DE LA REFINACION DE PETROLEO 4.1 0.0 27. PROD. DE CAUCHO Y PLASTICO 3.6 7.5 28. PROD. MINERALESS NO METALICOS ELAB. 25.7 12.2 29. PROD. METALICOS DE BASE Y ELAB. 3.7 3.8 30. MAQUINARIA, EQUIPOS Y SUMINISTROS 3.7 2.7 31. MATERIAL DE TRANSP. Y MANUF. DIVERSAS 3.4 5.3 32. ELECTRICIDAD 49.0 0.8 33. AGUA Y ALCANTARILLADOS 3.2 57.8 34. CONSTRUCCION 5.7 0.3 35. COMERCIO 10.8 3.8 36. RESTAURANTES Y HOTELES 2.8 3.1 37. TRANSP. Y ALMACENAMIENTO 46.3 0.6 38. COMUNICACIONES 4.0 5.3 39. BANCOS, SEGUROS, OTRAS INST. FINANC. 0.2 2.3 40. BIENES INMUEBLES Y SERV. PRESTADOS 8.5 3.7 41. ALQUILERES DE VIVIENDA 0.0 0.0 42. SERV. COMUNALES, SOCIALES Y PERS. 13.1 6.4 43. SERVICIOS DOMESTICOS 0.0 0.0 44. SERVICIOS DEL GOBIERNO 3.1 5.6

Como proporción de los Insumos Totales de cada rama, tanto la Gasolina como la Electricidad son relevantes para algunas industrias

Generación de Energía Eléctrica por Tipo de fuente Miles de KWH

100%

80%

60%

40%

20%

0% E10

A

J

O

E11

Importación

A

J

O

E12

Térmica

A

J

O

E13

Hidro

A

J

O

E14

Geo

A

J

2. Antecedentes  Analizar los efectos potenciales del precio del petróleo en la economía de El Salvador.

 Conocimiento técnico del Banco Central de Reserva de El Salvador  Disponibilidad de datos  Proyecto en desarrollo  Discusión más general de los resultados

%

% Autor

País

ES (95% CI)

Weight

Berndt y Botero (1985)

México

0.41 (0.30, 0.52)

0.97

Berndt y Botero (1985)

México

0.48 (0.36, 0.59)

0.96

Akinboade et al. (2008)

Sudaf rica

0.36 (0.30, 0.42)

0.99

Espino (2005)

México

0.49 (0.07, 0.90)

0.68

Eltony y Al-Mutairi (1995)

Kuwait

0.92 (0.27, 1.57)

0.46

Eltony (1996)

GCC

0.28 (0.11, 0.45)

0.92

Eltony (1996)

GCC

0.43 (0.29, 0.57)

0.95

Eltony (1996)

GCC

0.48 (0.38, 0.57)

0.97

Pock (2007)

Europa

0.95 (0.64, 1.27)

0.78

Amengual y Cubas (2002)

Uruguay

0.57 (0.35, 0.79)

0.88

Amengual y Cubas (2002)

Uruguay

0.60 (0.42, 0.78)

0.92

Morán, Zuñiga y Marriott (sf )

Ecuador

0.60 (0.33, 0.87)

0.83

Morán, Zuñiga y Marriott (sf )

Ecuador

0.60 (0.32, 0.88)

0.82

a u to r

pais

ES (9 5 % CI)

We i g h t

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 2 (-0 .5 6 , -0 .0 9 )

0 .5 1

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 2 (-0 .5 6 , -0 .0 7 )

0 .5 0

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 3 (-0 .5 6 , -0 .0 9 )

0 .5 1

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 2 (-0 .5 5 , -0 .0 8 )

0 .5 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 8 (-0 .6 3 , 0 .0 7 )

0 .3 7

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 8 (-0 .5 5 , 0 .0 0 )

0 .4 6

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 1 (-0 .5 2 , 0 .1 0 )

0 .4 1

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 1 (-0 .4 7 , 0 .0 5 )

0 .4 8

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 3 (-0 .4 8 , 0 .0 2 )

0 .4 9

Ki m e t a l (2 0 1 1 )

Co re a

-0 .1 5 (-0 .5 4 , 0 .2 3 )

0 .3 4

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 1 (-0 .5 1 , 0 .0 8 )

0 .4 3

Ki m e t a l (2 0 1 1 )

Co re a

-0 .1 9 (-0 .5 2 , 0 .1 4 )

0 .3 9

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 3 (-0 .4 9 , 0 .0 4 )

0 .4 7

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 8 (-0 .5 3 , -0 .0 3 )

0 .4 9

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 7 (-0 .7 3 , 0 .0 0 )

0 .3 5

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 0 (-0 .7 0 , -0 .0 9 )

0 .4 3

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 4 (-0 .5 6 , 0 .0 8 )

0 .4 0

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 8 (-0 .5 6 , 0 .0 1 )

0 .4 5

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 8 (-0 .5 5 , -0 .0 2 )

0 .4 7

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 5 (-0 .7 9 , 0 .0 9 )

0 .2 8

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 5 (-0 .6 9 , -0 .0 1 )

0 .3 8

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 1 (-0 .5 5 , 0 .1 3 )

0 .3 8

Ki m e t a l (2 0 1 1 )

Co re a

-0 .2 9 (-0 .5 8 , -0 .0 0 )

0 .4 4

Ki m e t a l (2 0 1 1 )

Nappo (2007)

Brasil

0.69 (0.48, 0.89)

0.89

Nappo (2007)

Brasil

0.70 (0.44, 0.96)

0.84

Rey es (2010)

México

1.00 (0.92, 1.09)

0.98

Vasquez (2005)

Perú

0.25 (-0.06, 0.56)

0.79

Vasquez (2005)

Perú

0.44 (0.06, 0.82)

0.72

Vasquez (2005)

Perú

0.64 (0.49, 0.78)

0.94

Namibia

0.96 (0.71, 1.21)

0.85

Vita et al (2006)

Namibia

1.08 (0.71, 1.45)

0.73

Flood et al (2007)

OCDE

0.68 (0.35, 1.00)

0.78

Flood et al (2007)

OCDE

0.82 (0.41, 1.23)

0.68

Hunt et al (2003)

UK

0.46 (0.10, 0.81)

0.74

Hunt et al (2003)

UK

0.56 (0.35, 0.77)

0.89

Iway emi et al (2010)

Nigeria

0.75 (0.15, 1.34)

0.51

Leesombatpiboon y Joutz (2010)

Tailandia

0.76 (0.48, 1.04)

0.82

Liao y Lee (sf )

China

0.59 (0.34, 0.85)

0.85

Sa’ad (2009)

Indonesia

0.88 (0.61, 1.15)

0.83

Samimi (1995)

Australia

0.52 (0.44, 0.59)

0.98

Sultan (2010)

Mauricio

0.77 (0.68, 0.86)

0.98

Baltagi y Grif f in (1983)

USA

0.11 (-0.16, 0.38)

0.83

Baltagi y Grif f in (1983)

Italia

0.12 (-0.22, 0.46)

0.76

Baltagi y Grif f in (1983)

Turquía

0.32 (-0.20, 0.84)

0.57

Baltagi y Grif f in (1983)

Irlanda

0.35 (-0.08, 0.78)

0.66

Baltagi y Grif f in (1983)

Holanda

0.36 (-0.18, 0.90)

0.55

Baltagi y Grif f in (1983)

Canadá

0.39 (0.24, 0.54)

0.94

Baltagi y Grif f in (1983)

Alemania

0.40 (0.18, 0.62)

0.88

Baltagi y Grif f in (1983)

UK

0.56 (0.14, 0.98)

0.67

Baltagi y Grif f in (1983)

OCDE

0.66 (0.52, 0.80)

0.95

Baltagi y Grif f in (1983)

Austria

0.76 (0.35, 1.17)

0.68

Noruega

0.80 (0.36, 1.24)

0.66

Belgica

0.85 (0.52, 1.18)

0.76

Baltagi y Grif f in (1983)

Suiza

1.07 (0.67, 1.47)

0.69

Baltagi y Grif f in (1983)

Francia

1.14 (0.82, 1.46)

0.77

Rey es (2009)

México

1.07 (1.04, 1.09)

1.00

Ferrer (2013)

ZMVM

0.69 (0.63, 0.74)

0.99

Burnquist y Bacchi (2002)

Brasil

0.96 (-0.15, 2.07)

0.23

0 .2 9

0 .4 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 3 (-0 .8 3 , -0 .0 4 )

0 .3 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 8 (-0 .6 7 , -0 .0 9 )

0 .4 4

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 9 (-0 .6 7 , -0 .1 0 )

0 .4 5

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 2 (-0 .9 5 , -0 .0 9 )

0 .3 0

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 2 (-0 .6 2 , -0 .0 1 )

0 .4 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 4 (-0 .8 4 , -0 .0 4 )

0 .3 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 9 (-0 .6 8 , -0 .1 0 )

0 .4 4

Schunemann (2007)

Brasil

1.13 (-0.18, 2.45)

0.17

Mexico

1.13 (0.90, 1.36)

0.87

Galindo (2008)

ZMVM

0.80 (0.63, 0.96)

0.93

Galindo (2008)

ZMG

0.79 (0.37, 1.21)

0.67

Galindo (2008)

ZMM

0.78 (0.54, 1.02)

0.86

Sene (2012)

Senegal

1.14 (0.53, 1.74)

0.50

Dahl (2012)

Mundo

1.16 (0.94, 1.38)

0.88

Lin y Prince (2013)

USA

0.19 (0.16, 0.23)

1.00

Lin y Prince (2013)

USA

0.21 (0.18, 0.24)

1.00

Lin y Prince (2013)

USA

0.04 (0.02, 0.06)

1.00

Lin y Prince (2013)

USA

0.05 (0.03, 0.07)

1.00

Crotte et al (2010)

México

0.53 (0.20, 0.87)

0.76

Crotte et al (2010)

México

1.19 (0.36, 2.01)

0.35

Liddle (2012)

OCDE

0.20 (-1.48, 1.88)

0.11

Liddle (2012)

OCDE

0.34 (0.32, 0.37)

1.00

Rao y Rao (2009)

Fiji

0.43 (0.24, 0.62)

0.91

Rao y Rao (2009)

Fiji

0.43 (0.04, 0.83)

0.69

Rao y Rao (2009)

Fiji

0.43 (0.04, 0.82)

0.70

Rao y Rao (2009)

Fiji

0.44 (0.00, 0.88)

0.65

Rao y Rao (2009)

Fiji

0.46 (0.04, 0.89)

0.67

Sentenac-Chemin (2012)

USA

0.60 (0.60, 0.60)

1.00

Sentenac-Chemin (2012)

India

0.65 (0.63, 0.67)

Los Angeles

0.13 (0.06, 0.19)

0.99

Sipes y Mendelsohn (2001)

Los Angeles

0.23 (0.09, 0.37)

0.95

Sipes y Mendelsohn (2001)

Connecticut

0.11 (0.03, 0.20)

0.98

Sipes y Mendelsohn (2001)

Connecticut

0.12 (0.04, 0.21)

0.98

Sipes y Mendelsohn (2001)

Connecticut

0.24 (0.13, 0.35)

0.97

Lin y Zeng (2013)

China

1.01 (0.94, 1.08)

0.98

Lin y Zeng (2013)

China

1.01 (0.94, 1.08)

0.98

Lin y Zeng (2013)

China

1.05 (0.97, 1.13)

0.98

Lin y Zeng (2013)

China

1.04 (0.97, 1.12)

0.98

Lin y Zeng (2013)

China

1.11 (1.03, 1.19)

0.98

Lin y Zeng (2013)

China

1.11 (1.03, 1.18)

0.98

Lin y Zeng (2013)

China

1.16 (1.10, 1.22)

0.99

Lin y Zeng (2013)

China

1.19 (1.13, 1.26)

0.99

Lin y Zeng (2013)

China

1.16 (1.10, 1.22)

0.99

Santos (2013)

Brasil

0.52 (0.46, 0.59)

0.99

Burke y Nishitateno (2013)

Mundo

0.95 (0.83, 1.07)

0.96

Burke y Nishitateno (2013)

Mundo

1.09 (0.99, 1.19)

0.97

Burke y Nishitateno (2013)

Mundo

1.10 (1.02, 1.18)

0.98

Burke y Nishitateno (2013)

Mundo

0.60 (0.36, 0.84)

0.87

Burke y Nishitateno (2013)

Mundo

0.96 (0.84, 1.08)

0.96

Burke y Nishitateno (2013)

Mundo

1.08 (0.98, 1.18)

0.97

Burke y Nishitateno (2013)

Mundo

0.72 (0.45, 0.99)

0.83

Burke y Nishitateno (2013)

Mundo

1.08 (0.98, 1.18)

0.97

Burke y Nishitateno (2013)

Mundo

0.98 (0.90, 1.06)

0.98

Burke y Nishitateno (2013)

Mundo

0.97 (0.89, 1.05)

0.98

Burke y Nishitateno (2013)

Mundo

0.83 (0.67, 0.99)

0.94

Burke y Nishitateno (2013)

Mundo

0.87 (0.67, 1.07)

0.90

Eskeland y Fey zioglu (1997)

México

0.84 (0.65, 1.03)

0.91

Li y Leung (2012)

China

1.14 (0.98, 1.30)

0.94

Mehrara y Ahmadi (2011)

India

1.14 (0.33, 1.95)

0.35

Schmalensee y Stoker (1999)

USA

0.32 (0.29, 0.35)

1.00

Schmalensee y Stoker (1999)

USA

0.12 (0.09, 0.15)

1.00

0 .1 4

0 .3 3

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 2 (-0 .8 2 , -0 .0 2 )

0 .3 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 2 (-0 .8 4 , -0 .2 0 )

0 .4 1

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 0 (-0 .8 1 , -0 .1 9 )

0 .4 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .8 6 (-1 .5 6 , -0 .1 6 )

0 .1 5

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 3 (-1 .0 1 , -0 .2 4 )

0 .3 3

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 5 (-0 .8 5 , -0 .0 5 )

0 .3 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 3 (-0 .8 5 , -0 .2 1 )

0 .4 1

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 0 (-0 .8 1 , -0 .1 9 )

0 .4 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 5 (-0 .9 9 , -0 .1 1 )

0 .2 9

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 4 (-0 .6 5 , -0 .0 3 )

0 .4 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 4 (-1 .0 6 , -0 .2 1 )

0 .3 0

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 9 (-0 .8 1 , -0 .1 7 )

0 .4 1

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 2 (-0 .6 2 , -0 .0 3 )

0 .4 4

Ki m e t a l (2 0 1 1 )

Co re a

-0 .5 2 (-0 .9 6 , -0 .0 9 )

0 .2 9

Ki m e t a l (2 0 1 1 )

Co re a

-0 .3 2 (-0 .6 3 , -0 .0 2 )

0 .4 2

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 2 (-1 .0 4 , -0 .2 0 )

0 .3 0

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 8 (-0 .8 0 , -0 .1 7 )

0 .4 1

Ki m e t a l (2 0 1 1 )

Schmalensee y Stoker (1999)

USA

0.15 (0.08, 0.22)

0.99

Schmalensee y Stoker (1999)

USA

0.33 (0.30, 0.36)

1.00

Schmalensee y Stoker (1999)

USA

0.14 (0.11, 0.16)

1.00 1.00

Scott (2012)

USA

0.17 (0.08, 0.26)

0.98

Scott (2012)

USA

0.16 (0.08, 0.25)

0.98

Scott (2012)

USA

0.15 (0.05, 0.25)

0.97

Scott (2012)

USA

0.17 (0.08, 0.26)

0.98

Scott (2012)

USA

0.80 (0.40, 1.20)

0.69

Scott (2012)

USA

0.76 (0.37, 1.15)

0.70

Scott (2012)

USA

0.70 (0.27, 1.14)

0.66

Scott (2012)

USA

0.77 (0.38, 1.16)

0.71

Al-Ghandoor et al (2013)

Jordania

0.74 (0.15, 1.34)

0.50

Baranzini y Weber (2013)

Suiza

0.67 (0.51, 0.84)

0.93

Breunig (2011)

USA

0.08 (0.01, 0.14)

0.99

Breunig (2011)

USA

0.11 (0.05, 0.17)

0.99

Breunig (2011)

Australia

Ov erall (I-squared = 99.2%, p = 0.000)

NOTE: Weights are f rom random ef f ects analy sis

0

-0 .3 1 (-0 .6 1 , -0 .0 2 )

-0 .8 5 (-1 .5 5 , -0 .1 4 )

0 .1 4

-0 .6 2 (-1 .0 0 , -0 .2 4 )

0 .3 4

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 9 (-1 .1 5 , -0 .2 4 )

0 .2 8

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 6 (-1 .0 1 , -0 .3 0 )

0 .3 6

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 5 (-0 .7 7 , -0 .1 3 )

0 .4 0

Ki m e t a l (2 0 1 1 )

Co re a

-0 .8 6 (-1 .5 7 , -0 .1 5 )

0 .1 4

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 3 (-1 .0 1 , -0 .2 4 )

0 .3 4

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 7 (-1 .1 2 , -0 .2 2 )

0 .2 8

Ki m e t a l (2 0 1 1 )

Co re a

-0 .6 4 (-1 .0 0 , -0 .2 9 )

0 .3 7

Ki m e t a l (2 0 1 1 )

Co re a

-0 .4 4 (-0 .7 6 , -0 .1 2 )

0 .4 0

Be rn d t y Bo te ro (1 9 8 5 )

M éx ic o

-0 .4 9 (-0 .7 1 , -0 .2 8 )

0 .5 5

Be rn d t y Bo te ro (1 9 8 5 )

M éx ic o

-0 .6 5 (-0 .9 3 , -0 .3 6 )

0 .4 4

Ak i n b o a d e e t a l . (2 0 0 8 )

Su d a fri c a

-0 .4 7 (-0 .6 4 , -0 .3 0 )

0 .6 1

Al v e s y Bu e n o 2 0 0 3

Bra s i l

-0 .4 7 (-1 .0 0 , 0 .0 7 )

0 .2 2

El to n y y Al -M u ta i ri (1 9 9 5 )

Ku wa i t

-0 .4 6 (-0 .5 7 , -0 .3 6 )

0 .7 0

El to n y (1 9 9 6 )

GCC

-0 .1 7 (-0 .2 5 , -0 .0 9 )

0 .7 2

El to n y (1 9 9 6 )

GCC

-0 .3 0 (-0 .5 0 , -0 .1 0 )

0 .5 6

Po c k (2 0 0 7 )

Eu ro p a

-0 .4 0 (-0 .5 4 , -0 .2 6 )

0 .6 5

Po c k (2 0 0 7 )

Eu ro p a

-0 .5 4 (-0 .9 7 , -0 .1 2 )

0 .3 0

In d i a

-0 .3 2 (-0 .4 8 , -0 .1 6 )

0 .6 3

Am e n g u a l y Cu b a s (2 0 0 2 )

Uru g u a y

-0 .4 5 (-0 .5 7 , -0 .3 3 )

0 .6 8

Am e n g u a l y Cu b a s (2 0 0 2 )

Uru g u a y

-0 .7 7 (-1 .0 1 , -0 .5 3 )

0 .5 2

Na p p o (2 0 0 7 )

Bra s i l

-0 .2 0 (-0 .3 5 , -0 .0 4 )

0 .6 3

Re y e s (2 0 1 0 )

M éx ic o

-0 .2 8 (-0 .3 7 , -0 .2 0 )

0 .7 2

Va s q u e z (2 0 0 5 )

Pe rú

-0 .6 5 (-0 .7 2 , -0 .5 7 )

0 .7 2

Va s q u e z (2 0 0 5 )

Pe rú

-0 .8 5 (-1 .0 1 , -0 .6 9 )

0 .6 3

Vi ta e t a l (2 0 0 6 )

Na m i b i a

-0 .8 6 (-1 .3 0 , -0 .4 2 )

0 .2 8

Vi ta e t a l (2 0 0 6 )

Na m i b i a

-0 .7 9 (-1 .4 3 , -0 .1 6 )

0 .1 7

Fl o o d e t a l (2 0 0 7 )

OCDE

-1 .0 8 (-1 .3 0 , -0 .8 6 )

0 .5 4

OCDE

-0 .8 8 (-1 .1 5 , -0 .6 2 )

0 .4 8

Hu n t e t a l (2 0 0 3 )

UK

-0 .1 3 (-0 .1 9 , -0 .0 7 )

0 .7 4

Hu n t e t a l (2 0 0 3 )

UK

-0 .3 1 (-0 .4 2 , -0 .1 9 )

0 .6 8

Iwa y e m i e t a l (2 0 1 0 )

Ni g e ri a

-0 .0 5 (-0 .2 0 , 0 .0 9 )

0 .6 4

L e e s o m b a tp i b o o n y J o u tz (2 0 1 0 )

Ta i l a n d i a

-0 .1 7 (-0 .2 8 , -0 .0 6 )

0 .6 9

L i a o y L e e (s f)

Ch i n a

-0 .1 3 (-0 .3 8 , 0 .1 2 )

0 .4 9

Sa ’ a d (2 0 0 9 )

In d o n e s i a

-0 .1 6 (-0 .2 1 , -0 .1 1 )

0 .7 5

Sa m i m i (1 9 9 5 )

Au s tra l i a

-0 .1 3 (-0 .2 6 , 0 .0 0 )

0 .6 6

Su l ta n (2 0 1 0 )

M a u ri c i o

-0 .4 4 (-0 .6 1 , -0 .2 7 )

0 .6 1

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Ca n a d á

-1 .0 7 (-1 .5 4 , -0 .6 0 )

0 .2 6

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

USA

-1 .0 0 (-1 .2 9 , -0 .7 1 )

0 .4 4

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Au s tri a

-0 .5 9 (-1 .1 0 , -0 .0 8 )

0 .2 4

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Be l g i c a

-0 .7 1 (-0 .8 9 , -0 .5 3 )

0 .6 0

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Di n a m a rc a

-0 .6 1 (-0 .8 1 , -0 .4 1 )

0 .5 7

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Fi n l a n d i a

-1 .1 0 (-2 .0 2 , -0 .1 8 )

0 .0 9

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Fra n c i a

-0 .7 0 (-0 .9 9 , -0 .4 1 )

0 .4 4

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Al e m a n i a

-0 .5 6 (-2 .1 7 , 1 .0 5 )

0 .0 3

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Gre c i a

-1 .1 2 (-2 .1 4 , -0 .1 0 )

0 .0 8

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Irl a n d a

-1 .6 2 (-2 .2 7 , -0 .9 7 )

0 .1 7

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Ita l i a

-1 .1 6 (-1 .9 4 , -0 .3 8 )

0 .1 2

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

No ru e g a

-0 .9 0 (-1 .4 5 , -0 .3 5 )

0 .2 1

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Po tu g a l

-0 .6 7 (-1 .3 4 , -0 .0 0 )

0 .1 6

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Es p a ñ a

-0 .3 0 (-1 .0 3 , 0 .4 3 )

0 .1 4

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Su e c i a

-0 .3 7 (-0 .5 9 , -0 .1 5 )

0 .5 4

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

UK

-0 .4 5 (-0 .9 8 , 0 .0 8 )

0 .2 2

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Au s tra l i a

-0 .1 8 (-0 .3 2 , -0 .0 4 )

0 .6 5

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

J apón

-0 .7 6 (-1 .0 9 , -0 .4 3 )

0 .3 9

Ste rn e r, Da h l y Fra n z e n (1 9 9 2 )

Tu rq u ía

-0 .6 1 (-0 .8 3 , -0 .3 9 )

0 .5 4

Ba l ta g i y Gri ffi n (1 9 8 3 )

Ca n a d á

-0 .3 6 (-0 .5 3 , -0 .1 9 )

0 .6 1

Ba l ta g i y Gri ffi n (1 9 8 3 )

USA

-0 .2 8 (-0 .4 6 , -0 .1 0 )

0 .6 0

Ba l ta g i y Gri ffi n (1 9 8 3 )

J apón

-0 .1 4 (-0 .2 5 , -0 .0 3 )

0 .6 9

Ba l ta g i y Gri ffi n (1 9 8 3 )

Au s tri a

-0 .7 9 (-1 .0 8 , -0 .5 0 )

0 .4 4

Ba l ta g i y Gri ffi n (1 9 8 3 )

Di n a m a rc a

-0 .1 4 (-0 .4 5 , 0 .1 7 )

0 .4 2

Ba l ta g i y Gri ffi n (1 9 8 3 )

Fra n c i a

-0 .2 0 (-0 .3 9 , -0 .0 1 )

0 .5 9

Ba l ta g i y Gri ffi n (1 9 8 3 )

Al e m a n i a

-0 .1 7 (-0 .3 0 , -0 .0 4 )

0 .6 7

Ba l ta g i y Gri ffi n (1 9 8 3 )

Gre c i a

-0 .3 4 (-0 .6 3 , -0 .0 5 )

0 .4 4

Ba l ta g i y Gri ffi n (1 9 8 3 )

Ita l i a

-0 .3 7 (-0 .4 8 , -0 .2 6 )

0 .6 9

Ba l ta g i y Gri ffi n (1 9 8 3 )

Ho l a n d a

-0 .4 0 (-0 .7 7 , -0 .0 3 )

0 .3 5

Ba l ta g i y Gri ffi n (1 9 8 3 )

No ru e g a

-0 .2 3 (-0 .5 1 , 0 .0 5 )

0 .4 5

Ba l ta g i y Gri ffi n (1 9 8 3 )

Su e c i a

-0 .6 2 (-0 .9 9 , -0 .2 5 )

0 .3 5

Ba l ta g i y Gri ffi n (1 9 8 3 )

0.53 (-0.05, 1.11)

0.52

0.63 (0.57, 0.69)

100.00

Su i z a

-0 .4 0 (-0 .6 8 , -0 .1 2 )

0 .4 5

Ba l ta g i y Gri ffi n (1 9 8 3 )

Tu rq u ía

-0 .2 6 (-0 .5 4 , 0 .0 2 )

0 .4 5

Ba l ta g i y Gri ffi n (1 9 8 3 )

OCDE

-0 .3 2 (-0 .4 0 , -0 .2 4 )

0 .7 2

Be n tz e n (1 9 9 4 )

Di n a m a rc a

-0 .4 1 (-0 .6 3 , -0 .2 0 )

0 .5 5

Bro a d s to c k y Hu n t (2 0 1 0 )

UK

-0 .1 2 (-0 .1 9 , -0 .0 5 )

0 .7 3

Bro a d s to c k y Hu n t (2 0 1 0 )

UK

-0 .1 2 (-0 .1 9 , -0 .0 5 )

0 .7 3

Re y e s (2 0 0 9 )

M éx ic o

-0 .1 8 (-0 .3 6 , 0 .0 0 )

0 .5 9

Fe rre r (2 0 1 3 )

ZM VM

-0 .3 9 (-0 .4 6 , -0 .3 2 )

0 .7 3

Bu rn q u i s t y Ba c c h i (2 0 0 2 )

Bra s i l

-0 .2 3 (-1 .3 4 , 0 .8 9 )

0 .0 7

Sc h u n e m a n n (2 0 0 7 )

Bra s i l

-0 .3 0 (-1 .6 1 , 1 .0 2 )

0 .0 5

Ga l i n d o (2 0 0 8 )

M ex ic o

-0 .1 4 (-0 .1 8 , -0 .1 0 )

0 .7 5

Ga l i n d o (2 0 0 8 )

ZM VM

-0 .4 1 (-0 .5 9 , -0 .2 4 )

0 .6 0

Ga l i n d o (2 0 0 8 )

ZM G

-0 .2 7 (-0 .4 9 , -0 .0 4 )

0 .5 3

Ga l i n d o (2 0 0 8 )

ZM M

-0 .3 8 (-0 .7 0 , -0 .0 6 )

0 .4 0

Se n e (2 0 1 2 )

Se n e g a l

-0 .3 0 (-1 .1 7 , 0 .5 7 )

0 .1 0

Da h l (2 0 1 2 )

M undo

-0 .4 4 (-0 .6 7 , -0 .2 1 )

0 .5 2

L i n y Pri n c e (2 0 1 3 )

USA

-0 .0 9 (-0 .1 2 , -0 .0 6 )

0 .7 5

L i n y Pri n c e (2 0 1 3 )

USA

-0 .0 9 (-0 .1 2 , -0 .0 6 )

0 .7 5

L i n y Pri n c e (2 0 1 3 )

USA

-0 .0 3 (-0 .0 4 , -0 .0 2 )

0 .7 6

L i n y Pri n c e (2 0 1 3 )

USA

-0 .0 3 (-0 .0 4 , -0 .0 2 )

0 .7 6

Cro tte e t a l (2 0 1 0 )

M éx ic o

-0 .2 9 (-0 .4 8 , -0 .1 1 )

0 .5 9

Cro tte e t a l (2 0 1 0 )

M éx ic o

-0 .3 8 (-0 .8 1 , 0 .0 4 )

0 .3 0

L i d d l e (2 0 1 2 )

OCDE

-0 .1 9 (-0 .2 5 , -0 .1 4 )

0 .7 4

L i d d l e (2 0 1 2 )

OCDE

-0 .4 3 (-0 .4 6 , -0 .4 0 )

0 .7 5

Ra o y Ra o (2 0 0 9 )

Fi j i

-0 .2 4 (-0 .3 5 , -0 .1 4 )

0 .6 9

Ra o y Ra o (2 0 0 9 )

Fi j i

-0 .2 0 (-0 .3 8 , -0 .0 2 )

0 .5 9

Ra o y Ra o (2 0 0 9 )

Fi j i

-0 .1 6 (-0 .3 4 , 0 .0 2 )

0 .5 9

Ra o y Ra o (2 0 0 9 )

Fi j i

-0 .1 6 (-0 .3 6 , 0 .0 4 )

0 .5 7

Ra o y Ra o (2 0 0 9 )

Fi j i

-0 .1 9 (-0 .3 8 , 0 .0 0 )

0 .5 8

Se n te n a c -Ch e m i n (2 0 1 2 )

USA

-0 .2 8 (-0 .3 8 , -0 .1 8 )

0 .7 0

Se n te n a c -Ch e m i n (2 0 1 2 )

In d i a

-0 .5 8 (-0 .7 5 , -0 .4 1 )

0 .6 1

Se n te n a c -Ch e m i n (2 0 1 2 )

In d i a

-0 .3 5 (-0 .6 9 , -0 .0 1 )

0 .3 9

Si p e s y M e n d e l s o h n (2 0 0 1 )

L o s An g e l e s

-0 .5 9 (-0 .7 5 , -0 .4 4 )

0 .6 3

Si p e s y M e n d e l s o h n (2 0 0 1 )

L o s An g e l e s

-0 .7 1 (-1 .0 0 , -0 .4 1 )

0 .4 3

Si p e s y M e n d e l s o h n (2 0 0 1 )

Co n n e c ti c u t

-0 .4 9 (-0 .6 7 , -0 .3 2 )

0 .6 0

Si p e s y M e n d e l s o h n (2 0 0 1 )

Co n n e c ti c u t

-0 .4 5 (-0 .6 3 , -0 .2 8 )

0 .6 0

Si p e s y M e n d e l s o h n (2 0 0 1 )

Co n n e c ti c u t

-1 .6 3 (-2 .4 1 , -0 .8 5 )

0 .1 2

Ch i n a

-0 .2 6 (-0 .4 4 , -0 .0 9 )

0 .6 1

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .2 3 (-0 .4 1 , -0 .0 5 )

0 .6 0

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .4 3 (-0 .6 2 , -0 .2 4 )

0 .5 8

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .3 1 (-5 .1 6 , 4 .5 3 )

0 .0 0

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .2 9 (-5 .3 1 , 4 .7 4 )

0 .0 0

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .5 0 (-5 .9 1 , 4 .9 1 )

0 .0 0

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .2 0 (-0 .3 7 , -0 .0 2 )

0 .6 0

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .0 8 (-0 .6 7 , 0 .5 2 )

0 .1 9

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .1 4 (-0 .7 2 , 0 .4 5 )

0 .1 9

L i n y Ze n g (2 0 1 3 )

Ch i n a

-0 .0 7 (-0 .7 0 , 0 .5 7 )

0 .1 7

Sa n to s (2 0 1 3 )

Bra s i l

-1 .1 9 (-1 .6 6 , -0 .7 1 )

0 .2 6

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .5 3 (-0 .7 1 , -0 .3 5 )

0 .6 0

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .5 0 (-0 .6 8 , -0 .3 2 )

0 .6 0

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .4 2 (-0 .5 4 , -0 .3 0 )

0 .6 8

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .4 5 (-0 .5 7 , -0 .3 3 )

0 .6 8

M undo

-0 .4 7 (-0 .6 3 , -0 .3 1 )

0 .6 3

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .5 1 (-0 .6 3 , -0 .3 9 )

0 .6 8

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .3 5 (-0 .6 2 , -0 .0 8 )

0 .4 6

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .2 3 (-0 .4 3 , -0 .0 3 )

0 .5 7

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .3 7 (-0 .7 2 , -0 .0 2 )

0 .3 7

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .2 6 (-0 .4 2 , -0 .1 0 )

0 .6 3

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .3 4 (-0 .6 1 , -0 .0 7 )

0 .4 6

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .2 3 (-0 .4 3 , -0 .0 3 )

0 .5 7

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .4 6 (-0 .8 1 , -0 .1 1 )

0 .3 7

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .2 6 (-0 .4 2 , -0 .1 0 )

0 .6 3

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .3 2 (-0 .4 2 , -0 .2 2 )

0 .7 0

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .2 5 (-0 .3 9 , -0 .1 1 )

0 .6 5

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .6 9 (-0 .9 6 , -0 .4 2 )

0 .4 6

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

M undo

-0 .4 7 (-0 .8 8 , -0 .0 6 )

0 .3 1

Es k e l a n d y Fe y z i o g l u (1 9 9 7 )

M éx ic o

-1 .3 9 (-1 .7 1 , -1 .0 7 )

0 .4 0

L i y L e u n g (2 0 1 2 )

Ch i n a

-0 .4 2 (-0 .6 2 , -0 .2 2 )

0 .5 7

M e h ra ra y Ah m a d i (2 0 1 1 )

In d i a

-1 .0 1 (-1 .3 1 , -0 .7 1 )

0 .4 3

Pu l l e r y Gre e n i n g (1 9 9 9 )

USA

-0 .3 3 (-0 .4 3 , -0 .2 2 )

0 .6 9

Pu l l e r y Gre e n i n g (1 9 9 9 )

USA

-1 .0 7 (-1 .1 7 , -0 .9 6 )

0 .7 0

Pu l l e r y Gre e n i n g (1 9 9 9 )

USA

-0 .4 8 (-0 .5 6 , -0 .3 9 )

0 .7 2

Sa u e r (2 0 0 7 )

USA

-1 .0 1 (-1 .1 9 , -0 .8 3 )

0 .5 9

Sa u e r (2 0 0 7 )

USA

-1 .1 4 (-1 .4 5 , -0 .8 4 )

0 .4 2

Sc h m a l e n s e e y Sto k e r (1 9 9 9 )

USA

-1 .0 1 (-1 .3 8 , -0 .6 4 )

0 .3 5

Sc h m a l e n s e e y Sto k e r (1 9 9 9 )

USA

-0 .8 1 (-1 .1 2 , -0 .4 9 )

0 .4 1

Sc h m a l e n s e e y Sto k e r (1 9 9 9 )

USA

-1 .1 3 (-1 .5 2 , -0 .7 4 )

0 .3 3

Sc h m a l e n s e e y Sto k e r (1 9 9 9 )

USA

-0 .7 2 (-1 .0 6 , -0 .3 8 )

0 .3 9

Sc h m a l e n s e e y Sto k e r (1 9 9 9 )

USA

-0 .2 9 (-0 .6 8 , 0 .0 9 )

0 .3 4

Sc o tt (2 0 1 2 )

USA

-0 .0 7 (-0 .0 9 , -0 .0 6 )

0 .7 6

Sc o tt (2 0 1 2 )

USA

-0 .0 8 (-0 .1 2 , -0 .0 4 )

0 .7 5

Sc o tt (2 0 1 2 )

USA

-0 .0 5 (-0 .1 0 , -0 .0 1 )

0 .7 4

Sc o tt (2 0 1 2 )

USA

-0 .3 4 (-0 .4 5 , -0 .2 2 )

0 .6 9

Sc o tt (2 0 1 2 )

USA

-0 .3 8 (-0 .5 6 , -0 .2 0 )

0 .5 9

Sc o tt (2 0 1 2 )

USA

-0 .2 5 (-0 .4 8 , -0 .0 3 )

0 .5 3

Ac k a h y Ad u (2 0 1 4 )

Gh a n a

-0 .0 6 (-0 .1 0 , -0 .0 3 )

0 .7 5

Al -Gh a n d o o r e t a l (2 0 1 3 )

J o rd a n i a

-0 .3 8 (-0 .7 6 , 0 .0 0 )

0 .3 4

Ba ra n z i n i y We b e r (2 0 1 3 )

Su i z a

-0 .3 4 (-0 .3 9 , -0 .2 9 )

0 .7 4

Bre u n i g (2 0 1 1 )

USA

-0 .0 8 (-0 .1 5 , -0 .0 2 )

0 .7 3

Bre u n i g (2 0 1 1 )

Au s tra l i a

-0 .3 0 (-0 .3 6 , -0 .2 4 )

0 .7 3

-0 .4 0 (-0 .4 3 , -0 .3 7 )

1 0 0 .0 0

(I-s q u a re d = 9 3 .7 % , p = 0 .0 0 0 )

2.45 NOTE: We i g h ts a re fro m ra n d o m e ffe c ts a n a l y s i s

Elasticidad

0 .4 4

Co re a

Co re a

Ov e ra l l

-2.45

Co re a

Ki m e t a l (2 0 1 1 )

Ki m e t a l (2 0 1 1 )

Bu rk e y Ni s h i ta te n o (2 0 1 3 )

0.16 (0.13, 0.19)

0 .4 5

-0 .8 8 (-1 .5 9 , -0 .1 6 )

-0 .6 3 (-1 .0 2 , -0 .2 4 )

L i n y Ze n g (2 0 1 3 )

USA

-0 .3 9 (-0 .6 7 , -0 .1 0 )

Co re a

Co re a

1.00

Sipes y Mendelsohn (2001)

Schmalensee y Stoker (1999)

Co re a

Ki m e t a l (2 0 1 1 )

Ki m e t a l (2 0 1 1 )

Fl o o d e t a l (2 0 0 7 )

Galindo (2008)

0 .4 7

-0 .5 2 (-0 .9 5 , -0 .0 8 )

-0 .3 1 (-0 .6 2 , -0 .0 1 )

Ra m a n a th a n (1 9 9 9 )

Baltagi y Grif f in (1983) Baltagi y Grif f in (1983)

-0 .3 5 (-0 .6 2 , -0 .0 8 )

Co re a

Co re a

Ki m e t a l (2 0 1 1 )

Vita et al (2006)

Co re a

Ki m e t a l (2 0 1 1 )

Ki m e t a l (2 0 1 1 )

-5 .9 1

0

Elasticidad

Fuente: Comisión Económica para América Latina y el Caribe (CEPAL), sobre la base de la revisión de articulos internacionales.

5 .9 1

3. Marco teórico: Curvas de Engel y modelos de demanda casi ideales lineales y cuadráticos

 Curvas de gasto de Engel  Modelos de demanda casi ideales (AIDS)  Modelos de demanda casi ideales cuadráticos (QUAIDS)

Con:

Bien de lujo con: i>0 Bien necesario con i0 Bien necesario con i

proponer documentos