Pages 5 to 9 of ejercicios derivadas

tangentes a la curva y = x3 cuando x = 1/2 y x = −1, construir la gráfica y representar las lıneas ... Hallar la derivada de la función y = x3−x2+1. 5 . Solución.
80KB Größe 6 Downloads 88 vistas
3

Ejercicios de derivadas 1. Determinar las tangentes de los ´angulos que forman con el eje positivo de las x las l´ıneas tangentes a la curva y = x3 cuando x = 1/2 y x = −1, construir la gr´afica y representar las l´ıneas tangentes. Soluci´ on.- a) 3/4, b) 3. 2. Determinar las tangentes de los ´angulos que forman con el eje positivo de las x las l´ıneas tangentes a la curva y = 1/x cuando x = 1/2 y x = 1, construir la gr´afica y representar las l´ıneas tangentes. Soluci´ on.- a) -4, b) -1. 3. Hallar la derivada de la funci´on y = x4 + 3x2 − 6. Soluci´ on.- y 0 = 4x3 + 6x. 4. Hallar la derivada de la funci´on y = 6x3 − x2 . Soluci´ on.- y 0 = 18x2 − 2x. 5. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

5x4 a+b



x2 a−b .



2x a−b .

6. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

x5 a+b

x3 −x2 +1 . 5

3x2 −2x . 5

7. Hallar la derivada de la funci´on y = 2ax3 − 0

x2 b

+ c.

2x b .

2

Soluci´ on.- y = 6ax −

5

7

8. Hallar la derivada de la funci´on y = 6x 2 + 4x 2 + 2x. 5

3

Soluci´ on.- y 0 = 21x 2 + 10x 2 + 2. 9. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

√ √3 2 x

+

3

1 √ 3 2 x



3(x+1)2 (x−1) 5

2x 2

1 2 √ 3 3x



x + x1 .

(x+1)3 3

x2

.

√ 3

√ x2 − 2 x + 5.

√1 . x

12. Hallar la derivada de la funci´on y = 2

√ 3

.

11. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

3x +

1 x2 .

10. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =



5

2 ax √ 3 x

+

b √ x x



√ 3 √x . x

7

Soluci´ on.- y 0 = 53 ax 3 − 23 bx− 2 + 16 x− 6 . 13. Hallar la derivada de la funci´on y = (1 + 4x3 )(1 + 2x2 ). Soluci´ on.- y 0 = 4x(1 + 3x + 10x3 ). 14. Hallar la derivada de la funci´on y = x(2x − 1)(3x + 2). Soluci´ on.- y 0 = 2(9x2 + x − 1).

4

15. Hallar la derivada de la funci´on y = (2x − 1)(x2 − 6x + 3). Soluci´ on.- y 0 = 6x2 − 26x + 12. 16. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

2x4 b2 −x2 .

4x3 (2b2 −x2 ) (b2 −x2 )2 .

17. Hallar la derivada de la funci´on y =

a−x a+x .

2a Soluci´ on.- y 0 = − (a+x) 2.

18. Hallar la derivada de la funci´on f (t) = t2 (3+t2 (1+t2 )2 .

Soluci´ on.- f 0 (t) =

19. Hallar la derivada de la funci´on f (s) = Soluci´ on.- f 0 (s) =

(s+4)2 s+3 .

(s+2)(s+4) (s+3)2 .

20. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

t3 1+t2 .

x3 +1 x2 −x−2 .

x4 −2x3 −6x2 −2x+1 . (x2 −x−2)2

21. Hallar la derivada de la funci´on y = (2x2 − 3)2 . Soluci´ on.- y 0 = 8x(2x2 − 3). 22. Hallar la derivada de la funci´on y = (x2 + a2 )5 . Soluci´ on.- y 0 = 10x(x2 + a2 )4 . 23. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =



x2 + a2 .

√ x . x2 +a2

√ 24. Hallar la derivada de la funci´on y = (a + x) a − x. Soluci´ on.- y 0 =

a−3x √ . 2 a−x

q 25. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

1 √ . (1−x) 1−x2

26. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

1+x 1−x .

1+4x2

3 x2 (1+x2 ) 2

.

27. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 = √ 3 3

2 2x √ −1 . x 1+x2

√ 3

x2 + x + 1.

2x+1 . (x2 +x+1)2

28. Hallar la derivada de la funci´on y = (1 + ´2 ³ 1 . Soluci´ on.- y 0 = 1 + √ 3 x

√ 3

x)3 .

5

29. Hallar la derivada de la funci´on y = sin2 x. Soluci´ on.- y 0 = sin 2x. 30. Hallar la derivada de la funci´on y = 2 sin x + cos 3x. Soluci´ on.- y 0 = 2 cos x − 3 sin 3x. 31. Hallar la derivada de la funci´on y = tan(ax + b). Soluci´ on.- y 0 =

a cos2 (ax+b) .

32. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

sin x 1+cos x .

1 1+cos x .

33. Hallar la derivada de la funci´on y = sin 2x cos 3x. Soluci´ on.- y 0 = 2 cos 2x cos 3x − 3 sin 2x sin 3x. 34. Hallar la derivada de la funci´on y = cot2 5x. Soluci´ on.- y 0 = −10 cot 5x csc2 5x. 35. Hallar la derivada de la funci´on f (t) = t sin t + cos t. Soluci´ on.- f 0 (t) = t cos t. 36. Hallar la derivada de la funci´on f (t) = sin3 t cos t. Soluci´ on.- f 0 (t) = sin2 t(3 cos2 t − sin2 t). √ 37. Hallar la derivada de la funci´on y = a cos 2x. a sin 2x . Soluci´ on.- y 0 = − √ cos 2x

38. Hallar la derivada de la funci´on y =

1 2

tan2 x.

Soluci´ on.- y 0 = tan x sec2 x. 39. Hallar la derivada de la funci´on y = ln cos x. Soluci´ on.- y 0 = − tan x. 40. Hallar la derivada de la funci´on y = ln tan x. Soluci´ on.- y 0 =

2 sin 2x .

41. Hallar la derivada de la funci´on y = ln sin2 x. Soluci´ on.- y 0 = 2 cot x. 42. Hallar la derivada de la funci´on y =

tan x−1 sec x .

Soluci´ on.- y 0 = sin x + cos x. q 43. Hallar la derivada de la funci´on y = ln Soluci´ on.- y 0 =

1+sin x 1−sin x .

1 cos x .

44. Hallar la derivada de la funci´on f (x) = sin(ln x). Soluci´ on.- f 0 (x) =

cos(ln x) . x

6

45. Hallar la derivada de la funci´on f (x) = tan(ln x). Soluci´ on.- f 0 (x) =

sec2 (ln x) . x

46. Hallar la derivada de la funci´on f (x) = sin(cos x). Soluci´ on.- f 0 (x) = − sin x cos(cos x). 1+x 47. Hallar la derivada de la funci´on y = ln 1−x .

Soluci´ on.- y 0 =

2 1−x2 .

48. Hallar la derivada de la funci´on y = log3 (x2 − sin x). Soluci´ on.- y 0 =

2x−cos x (x2 −sin x) ln 3 . 2

1+x 49. Hallar la derivada de la funci´on y = ln 1−x 2.

Soluci´ on.- y 0 =

4x 1−x4 .

50. Hallar la derivada de la funci´on y = ln(x2 + x). Soluci´ on.- y 0 =

2x+1 x2 +x .

51. Hallar la derivada de la funci´on y = ln(x3 − 2x + 5). Soluci´ on.- y 0 =

3x2 −2 x3 −2x+5 .

52. Hallar la derivada de la funci´on y = x ln x. Soluci´ on.- y 0 = ln x + 1. 53. Hallar la derivada de la funci´on y = ln3 x. Soluci´ on.- y 0 =

3 ln2 x x .

54. Hallar la derivada de la funci´on y = ln(x + Soluci´ on.- y 0 =



1 + x2 ).

√ 1 . 1+x2

55. Hallar la derivada de la funci´on y = ln(ln x). Soluci´ on.- y 0 =

1 x ln x .

56. Hallar la derivada de la funci´on y = e(4x+5) . Soluci´ on.- y 0 = 4e(4x+5) . 2

57. Hallar la derivada de la funci´on y = ax . 2

Soluci´ on.- y 0 = 2xax ln a. 58. Hallar la derivada de la funci´on y = 7(x 0

2

(x +2x)

Soluci´ on.- y = 2(x + 1)7

2

+2x)

.

ln 7.

59. Hallar la derivada de la funci´on y = ex (1 − x2 ). Soluci´ on.- y 0 = ex (1 − 2x − x2 ). 60. Hallar la derivada de la funci´on y = Soluci´ on.- y 0 =

2ex (ex +1)2 .

ex −1 ex +1 .

7

61. Hallar la derivada de la funci´on y = esin x . Soluci´ on.- y 0 = esin x cos x. 62. Hallar la derivada de la funci´on y = atan nx . Soluci´ on.- y 0 = natan nx sec2 nx ln a. 63. Hallar la derivada de la funci´on y = ecos x sin x. Soluci´ on.- y 0 = ecos x (cos x − sin2 x). 64. Hallar la derivada de la funci´on y = ex ln(sin x). Soluci´ on.- y 0 = ex (cot x + ln(sin x)). 1

65. Hallar la derivada de la funci´on y = x x . ¢ 1 ¡ x Soluci´ on.- y 0 = x x 1−ln . x2 66. Hallar la derivada de la funci´on y = xln x . Soluci´ on.- y 0 = xln x−1 ln x2 . 67. Hallar la derivada de la funci´on y = xx . Soluci´ on.- y 0 = xx (1 + ln x). x

68. Hallar la derivada de la funci´on y = ex . x

Soluci´ on.- y 0 = ex (1 + ln x)xx .