La historia de la química como herramienta didáctica Bernardo Herradón IQOG-CSIC 23 de d abrill de d 2015
ENSEÑANZA DE LAS CIENCIAS Enseñanza formal (conceptos, memorizar, etc.). Nuestra vida cotidiana. Lo que nos rodea. Lo que ocurre a diario. Las noticias de prensa. Las prácticas de laboratorio. laboratorio Los métodos de la difusión de la cultura científica. Los hechos y anécdotas históricas. El desarrollo histórico de los conceptos.
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
La ciencia es la mayor obra colectiva de la historia de la humanidad (P. M. Etxenique)
Los beneficios de la ciencia 1) Nos proporciona una vida más larga. 2) La vida es más saludable. saludable Monitoriza nuestra salud salud. Proporciona medicinas que curan nuestras enfermedades, piezas de recambio para nuestro cuerpo, palia dolores y achaques. 3) Nos suministra agua que podemos beber, usar para nuestra higiene o regar nuestras plantaciones. 4) Nos ayuda a tener más y mejores alimentos. 5) Cuida de nuestro ganado y animales de compañía. p p energía: g calor en invierno,, frescor en verano,, 6)) Nos proporciona electricidad para la iluminación, nos permite circular en vehículos. 7) Nuestra vida cotidiana es más cómoda: electrodomésticos, iluminación, transporte.
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Los beneficios de la ciencia 8) Hace que nuestras ropas y sus colores sean más resistentes y atractivos; mejora nuestro aspecto con perfumes, productos de higiene y de cosmética; contribuye en la limpieza del hogar y de nuestros utensilios; ayuda a mantener frescos nuestros alimentos; y prácticamente nos proporciona todos los artículos que usamos a diario. diario 9) Facilita el ocio: deporte, jardinería, lectura, escuchar música,… 10) Nos permite estar a la última en tecnología: el ordenador más potente y ligero; el móvil más ligero; el sistema más moderno de iluminación, el medio de transporte adecuado; el material para batir marcas deportivos; y muchas aplicaciones más. 11) “Alimenta” el espíritu. http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Situación actual de las ciencias
Falta de vocaciones científicas. ¿A que es debido? ¿Se percibe la utilidad de la ciencia? ¿Materia aburrida? ¿difícil? ¿Calidad y cantidad de los estudios en secundaria/bachilerato? ¿Reconocimiento social del científico? http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Papel del profesor: ideas a transmitir La creatividad de la Ciencia. La utilidad L ilid d d de lla Ci Ciencia i ((ell profesor f de d Ci Ciencia i tiene i que ser un apasionado y transmitir que su Ciencia es el motor que hace progresar nuestra Sociedad). Sociedad) La Ciencia es divertida. Cada día nos enfrentamos a lo desconocido, y el resultado nos permite it progresar en ell conocimiento. i i t La Ciencia es la mayor obra colectiva de la historia de la humanidad.
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
¿CUÁNDO EMPIEZA LA VOCACIÓN CIENTÍFICA? ¿CUÁNDO SE DEBE EMPEZAR A FOMENTAR LA VOCACIÓN CIENTÍFICA?
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
¿Qué imagen tiene un adolescente de un científico?
Prácticas de laboratorio Papel del profesor de primaria, ESO y bachillerato
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Las pseudociencias, enemigos poderosos
E vez de En d pelear l abiertamente bi contra las l pseudociencias: d i i MÁS, MÁS Y MÁS CULTURA CIENTÍFICA DESDE LA CUNA http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Conseguir que la gente (especialmente los más jóvenes) se interese por la ciencia y adquiera conocimiento i i t científico i tífi http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
¿Qué es enseñar bien química? ¿Mucha materia? ¿Poca materia y bien aprendida? ¿Prácticas de laboratorio? ¿Horas lectivas? ¿La química en Física y Química o en Ciencias Naturales?
¿Por qué nosotros, los químicos, queremos que se enseñe bien la química? q Porque ¿hacen falta profesionales de la química?
Aspectos a tener en cuenta al enseñar Química: Despertar D t ell interés i t é del d l alumno l con actividades ti id d adecuadas d d (prácticas ( á ti de d laboratorio, visitas a instalaciones científicas, ferias científicas). Dest c r lla utilidad Destacar utilid d de la l Ciencia Cienci en el progreso pr res de la l S Sociedad. cied d La Ciencia nos rodea: Noticias en los medios de comunicación Objetos cotidianos Actividades relacionadas con la Divulgación Científica (el profesor de secundaria como divulgador o como transmisor de la Divulgación). Aprovechar los recursos proporcionados por INTERNET. Aspectos históricos y biográficos de los científicos (también son personas). Colaboración con entidades (CSIC, RSEF, RSEQ).
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Los conceptos fundamentales de la Química La L materia consiste de d alrededor l d d de d 100 elementos. l Los elementos se componen de átomos. La estructura orbitálica de los átomos (dónde están los electrones) explica la periodicidad de sus propiedades. Los enlaces químicos se forman cuando los electrones se emparejan. para la función. Si q quieres estudiar La forma es fundamental p la función, estudia la estructura. Las moléculas se atraen y repelen entre sí. La energía es ciega a su modo de almacenaje. Las reacciones son de un número pequeño de tipos. Las L velocidades l id d de d reacción ió se describen d ib por ecuaciones i matemáticas. Atkins, Chemistry, The Great Ideas. Pure Appl. Chem. 1999, 71, 927
La química y las ciencias naturales
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Científicos de la naturaleza Materia Energía Interacción entre la materia y la energía Geología
Física
Química
Biología Matemáticas
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Científicos de la naturaleza Materia Energía Interacción entre la materia y la energía Geología
Física
Química
Biología
Ecología Ciencias medioambientales Toxicología Bioquímica g molecular Biología Astrofísica etc….
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
¿Qué Q es la Q Química? La química es la ciencia que estudia la composición, estructura, propiedades y transformaciones de la materia, especialmente a nivel atómico y molecular. ¿Cuantas “químicas” hay? La división por áreas de la química es una idea del siglo XX: SÓLO UNA QUÍMICA, una ciencia mutidisciplinar e i interdisciplinar. di i li Conocimiento C i i t químico í i más á generall posible ibl (y ( también t bié más á amplio) y conocimientos en ciencias “más” fundamentales (matemáticas, (mat mát cas, f física) s ca) y en n ár áreas as vecinas c nas ((biomedicina, om c na, ciencias de los materiales,…)
Átomo, elemento químico.
Elemento químico: sustancia formada por una única clase de átomos (con el mismo número de protones en el núcleo). Toda la materia está formada por sólo 90 clases de átomos. ¿La Química empieza en los electrones? Responsable de los enlaces químicos, que es lo que hace que la materia sea estable. químico ((interacción entre electrones): ) la interacción q que mantiene Enlace q a los átomos unidos en la molécula. Pero la posición de los núcleos es fundamental. http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
DIMÍTRI IVÁNOVICH MENDELÉIEV (Tobolsk, 1834 - San Petersburgo, 1907). Químico ruso, creador de la Tabla Periódica de los elementos. Su investigación principal fue la que dio origen a la enunciación de la ley periódica de los elementos base del sistema periódico que lleva su nombre. En 1869 publicó la mayor de sus obras, “Principios de Química”, donde formulaba su famosa Tabla Periódica, traducida a todas las lenguas y que fue lib de libro d texto durante d muchos h años. Se considera a Mendeléiev un genio, no sólo por el ingenio que mostró para aplicar todo lo conocido y predecir lo no conocido sobre los elementos químicos, plasmándolo en su tabla periódica, sino por los numerosos trabajos realizados a lo largo de toda su vida en diversos campos científicos y tecnológicos (agricultura, ganadería, industria petroquímica, etc). Se nombró Mendelevio (Md) al elemento químico sintético de número atómico 101 en homenaje al ilustre químico ruso. El día 2 de febrero de 2007 se cumplió el centenario de su muerte. muerte
1 1
6 941 6,941 +1
Li 11
3
9 0122 9,0122
22,990 +1
Rb 55
+1
137,33
56
Ba
[Xe] 6 CESIO
(223,02) +1
[Rn] 7 s1 FRANCIO
+3
Lu
[Xe] 4f145d16s2 LUTECIO
119
88 (226,03)
Ra
Zr
Lr
+3
5f147s17p1?
[Rn] LAURENCIO
Nb
+4
+3 +5
[Kr] 4d45s1 NIOBIO
95,94
+2 +3 +4 +5 [Kr] 4d55s1 +6 MOLIBDENO
Mo
+5
+2 +3 +4 +6 [Ar] 3d54s2 +7 MANGANESO
Mn
Ru
186,21 76
Re
¿?
5f146d27s2?
[Rn] RUTHERFORDIO
¿?
Db
Sg
5f146d37s2
[Rn] DUBNIO
Bh
5f146d47s2
[Rn] SEABORGIO
¿?
5f146d57s2
[Rn] BOHRIO
Co
+3 +4 +8
+2 +3
[Kr] 4d85s1 RODIO +4 +6 +8
[Xe] 4f145d66s2 OSMIO ¿?
5f146d67s2
[Rn] HASSIO
6
+2 +33
+1 +2 +3 +4
+2 +4
[Kr] 4d10 PALADIO
192,22 78
Mt
195,08 79
Pt
¿?
¿?
5f146d97s1
[Rn] DARMSTADTIO
[Rn] MEITNERIO
+1 +2
26,982 14
112,41
196,97 80
Au
+1 +3
Rg
¿?
+3 +5 -3
+2 +4
Sb
+3 +5 -3
207,2
83
35
208,98 84
79,904 36
53
127,60
(208,98) 85
83,798
Kr
138,91 58
57
La
+3
[Xe] 5d16s2 LANTANO
89
(227,03) 90
Ac
+1 +3
[Rn] 6d17s2 ACTINIO
GASEOSOS
SÓLIDOS
LÍQUIDOS (30ºC)
SINTÉTICOS
140,12 59
Ce
+3 +4
[Xe] 4f15d16s2 CERIO
232,04 91
Th
+4
[Rn] 6d27s2 TORIO
140,91 60
Pr
+3
[Xe] 4f36s2 PRASEODIMIO +3 +4 +5
+3
[Xe] 4f46s2 NEODIMIO
231,04 92
Pa
[Rn] 5f26d17s2 PROTOACTINIO
(144,91) 62
144,24 61
Nd
+3
Pm
238,05 93
+3 +4 +5 +6 [Rn] 5f36d17s2 URANIO
U
(237,05) 94
NO-METAL
+2 +3
[Xe] 4f66s2 SAMARIO
+3 +4 +5 +6 [Rn] 5f46d17s2 NEPTUNIO
Np
150,36 63
Sm
[Xe] 4f56s2 PROMETIO
Tl
113
(285) ¿?
126,90 54
131,29
0 +2 +4 +6 [Kr] 4d105s25p6 +8 XENÓN
(209,99)
86
Xe
Pb
(284) 114
Bi
(222,02)
(289) 115
(288) 116
¿?
¿?
[Rn]5f146d107s27p1
[Rn]5f146d107s27p2
[Rn]5f146d107s27p3
UNUNCUADIO
UNUNPENTIO
Rn
At
Po
(289) 117
118
¿?
¿?
Uut Uuq Uup Uuh Uus Uuo
[Rn]5f146d107s2 UNUNBIO
(244,06) 95
GASES NOBLES
+2 +3
UNUNTRIO
157,25 65 +3
Gd
[Xe] 4f76s2 EUROPIO
+3 +4 +5 +6 [Rn] 5f67s2 PLUTONIO
Pu
151,96 64
Eu
(243,06) 96
(247,07) 97 +3
METALES ALCALINOTÉRREOS
Dy y
+3 +4
SEMICONDUCTOR
* Los valores entre paréntesis se refieren al isótopo más estable ** Los valores de los elementos gaseosos corresponden al líquido a temperatura de ebullición
[Xe] 4f106s2 DISPROSIO
(247,07) 98
Bk
[Rn] 5f97s2 BERQUELIO
[Rn] 5f76d17s2 CURIO
162,50 67 +3
+3
[Xe] 4f96s2 TERBIO
Am Cm
METALES ALCALINOS
158,93 66
Tb
[Xe] 4f75d16s2 GADOLINIO
+3 +4 +5 +6 [Rn] 5f77s2 AMERICIO
0 2 4
I
[Rn]5f146d107s27p4 [Rn]5f146d107s27p5 [Rn]5f146d107s27p6 UNUNHEXIO UNUNSEPTIO UNUNOCTIO
120
[Uuo] 8s2 UNBINILIO
0
[Ar] 3d104s24p6 CRIPTÓN
+1 +3 +5 +7 [Kr] 4d105s25p- 51 YODO
+4 +6 -2
39,948
Ar
Br
[Kr] 4d105s25p4 TELURIO
0
[Ne] 3s23p6 ARGÓN
+1 +3 +5 +7 [Ar] 3d104s24p5- 1 BROMO
+4 +6 -2
Te
[Kr] 4d105s25p3 ANTIMONIO
35,453 18
Cl
78,96
Se
20,180
Ne
[He] 2s22p6 NEÓN
+1 +3 +5 +7 [Ne] 3s23p5 - 1 CLORO
+2 +4 +6 -2
[Ar] 3d104s24p4 SELENIO
121,76 52
118,71 51
Sn
[Kr] 4d105s25p2 ESTAÑO
204,38 82
81
Uub
ROENTGENIO
+3
34
74,922
As
[Ar] 3d104s24p3 ARSÉNICO
-1
F
[He] 2s22p5 FLÚOR
+1 +2 +3 +2 +1 0 +3 +4 +5 +4 +3 2 +5 +7 - 15 [Xe]4f145d106s26p6 [Xe]4f145d106s26p1 [Xe]4f145d106s26p2 [Xe]4f145d106s26p3 [Xe]4f145d106s26p4 [Xe]4f145d106s26p RADÓN POLONIO TALIO PLOMO BISMUTO ASTATO
+1 +2
[Xe] 4f145d106s2 MERCURIO
[Rn]5f146d107s1
114,82 50
In
33
+2 +4
[Ar] 3d104s24p2 GERMANIO
[Kr] 4d105s25p1 INDIO
200,59
Hg
Ge
S
[Ne] 3s23p4 AZUFRE
0
1s2 HELIO
18 998 10 18,998
-1 -2
32,065 17
+3 +5 -3
P
[Ne] 3s23p3 FÓSFORO
72,64
+3
49
+2
Cd
[Xe] 4f145d106s1 ORO
69,723 32
Ga
15 999 9 15,999
O
He
17
[He] 2s22p4 OXÍGENO
30,974 16
15
[Ne] 3s23p2 SILICIO
[Ar] 3d104s24p1 GALIO
14 007 8 14,007
N
+2 +4 -4
Si
16
+2 +3 +4 +5 [He] 2s22p3 - 2 NITRÓGENO- 3
+2 +4 -4
28,086
+3
31
+2
[Kr] 4d105s2 CADMIO
(281) 111 (272,15) 112
Ds
5f146d77s2
Ag
[Kr] 4d105s1 PLATA
+1 +2 +2 +4 +3 +4 [Xe] 4f145d76s2 +6 [Xe] 4f145d96s1 IRIDIO PLATINO
65,409
Zn
12 011 7 12,011
C
[He] 2s22p2 CARBONO
[Ne] 3s23p1 ALUMINIO
[Ar] 3d104s2 CINC
107,87 48
106,42 47
Pd
Ir
+1 +2
Cu
[Ar] 3d104s1 COBRE
15
+3
Al
12
63,546 30
58,693 29
Ni
(277) 109 (268,14) 110
Hs
11
[Ar] 3d84s2 NÍQUEL
102,91 46
Rh
190,23 77
Os
10
[Ar] 3d74s2 COBALTO
[Kr] 4d75s1 RUTENIO
+2 +4 +3 +6 +4 +7 +5 14 5 2 [[Xe]] 4f145d46s2 +6 [Xe] 4f 5d 6s WOLFRAMIO RENIO
W
+2 +3 +66
101,07 45
+4 +6 +7
Tc
[Kr] 4d65s2 TECNECIO
18,811
B
58,933 28
55,845 27
Fe
14
[He] 2s22p1 BORO
9
[Ar] 3d64s2 HIERRO
98,907 44
43
183,84 75
180,95 74
Ta
[Xe] 4f145d36s2 TÁNTALO Á
+2 +33 +6
8
54,938 26
51,996 25
Cr
5
13
7
[Ar] 3d54s1 CROMO
*
Estructura electrónica
(262,11) 105 (262,11) 106 (266,12) 107 (264,12) 108
Rf
Uue Ubn [Uuo] 8s1 UNUNENIO
+2 +3 +4 +5
92,906 42
+4
[Xe] 4f145d26s2 HAFNIO
103 (262,11) 104
+2
[Rn] 7 s2 RADIO
50,942 24
[Ar] 3d34s2 VANADIO
178,49 73
Hf
6
V
[Kr] 4d25s2 CIRCONIO
174,97 72
71
+2
BARIO
+2 +3 +44
91,224 41
+3
Y
[Kr] 4d15s2 ITRIO
[Xe] 6 s2
s1
Ti
[Ar] 3d24s2 TITANIO
88,906 40
39
+2
[Kr] 5 s2 ESTRONCIO
132,91
Fr
Sr
+3
[Ar] 3d14s2 ESCANDIO
87,62
38
+1
Cs 87
Sc
5
47,867 23
44,956 22
21
+2
CALCIO
[Kr] 5s1 RUBIDIO
6
40,078
Ca
[Ar] 4 s2
85,468
37
5
20
+1
[Ar] 4 s1 POTASIO
4
13
Estados de oxidación
**
+2
3
+2 +4 -4
[He] 2s22p2 CARBONO
Nombre
24,305
Mg
MAGNESIO
39,098
K
12
Masa atómica
12,011
C
Símbolo
[Ne] 3s2
[Ne] 3s1 SODIO
6
Nº atómico
+2
Be [He] 2s2 BERILIO
Na 19
8
4
[He] 2s1 LITIO
4,0026
2
TABLA PERIÓDICA DE LOS ELEMENTOS
2
1s1 HIDRÓGENO
3
7
+1 -1
H
2
4
18
1,0079
1
164,93 68 +3
Ho
[Xe] 4f116s2 HOLMIO
(251,08) 99
167,26 69
Er
+3
[Xe] 4f126s2 ERBIO
168,93 70
Tm
+3
[Xe] 4f136s2 TULIO
+3
+3
[Rn] 5f127s2 FERMIO
[Rn] 5f137s2 MENDELEVIO
METALES DE LANTÁNIDOS TRANSICIÓN
ACTÍNIDOS
+3
+3
[Xe] 4f146s2 ITERBIO
(252,08) 100 (257,10) 101 (258,10) 102 (259,10)
[Rn] 5f117s2 EINSTENIO
Cf
[Rn] 5f107s2 CALIFORNIO
173,04
Yb
+3
Es
Fm Md
+3
No
[Rn] 5f147s2 NOBELIO
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
¿Qué es la Química? Algunas “visiones” y definiciones sobre la Química: LA QUÍMICA ENTRE LA FÍSICA Y LA BIOLOGÍA.
LA QUÍMICA ENTRE LA BIOMEDICINA Y LA CIENCIA DE LOS M L MATERIALES. E LE . LA QUÍMICA: LA CIENCIA CENTRAL, ÚTIL Y CREATIVA. LA QUÍMICA: CIENCIA UNIVERSAL LA QUÍMICA CREA SU PROPIO OBJETO. OBJETO La Química es como el arte. Por ambos caminos obtienes cosas. Con la Química puedes cambiar el orden de los átomos y crear realidades que no existían. Jean Marie Lehn (Premio Nobel de Química Jean-Marie Química, 1987) Diario Vasco (Internet), 29-septiembre-2010
Otras “visiones” sobre la Química LA QUÍMICA, LA CIENCIA DE LO COTIDIANO
Podemos verdaderamente decir que el alcance de la Química y sus aplicaciones son interminables (Leo H. Baekeland, 1932)
O2
H2O
N2
Fe33+
CO2
NaCl
Hidrocarburos
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
LA QUÍMICA CREA SU PROPIO OBJETO: EL PODER DE LA SÍNTESIS ORGÁNICA Papel de la síntesis química (capacidad de obtener sustancias químicas): (productos naturales)) Sustancias naturales (p Sustancias no-naturales (interés teórico o práctico) con mejores propiedades que las naturales
Natural vs Sintético (artificial)
LA QUÍMICA CREA SU PROPIO OBJETO Basta recostarse en el sillón del dentista para que se le cure a uno cualquier nostalgia de paraísos pretecnológicos perdidos. Cualquiera tiempo pasado anterior a la anestesia fue pavoroso. pavoroso Antonio Muñoz Molina (http://bit.ly/125Odkk)
Morfina (1804)
Meperidina (1932)
Fentanilo (1960)
La química, una actividad de 500.000 años Pre-alquimia q
Química moderna
Alquimia q
Química en desarrollo
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Luz y calor
Elementos químicos conocidos en la prehistoria
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Elementos químicos más abundantes en la corteza, los océanos y la atmósfera terrestres
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
La alquimia: una actividad de 5000 años.
Alquimia q (origen g árabe). Kéme (tierra, Egipto). gp Khemia (transmutación). Alquimia: el arte de la transformación Actividad práctica: metales, cerámicas, tintes, pigmentos, ornamentación, ritos funerarios, …. Misticismo, astrología, religión,….. Componente filosófico, especulativo (especialmente la griega)
Tales de Mileto (agua) Anaximandro (apeirón) An ximenes ((aire) Anaximenes ire) Heráclito de Éfeso (fuego)
Atomismo (Leucipo, Demócrito)
Empedocles (ca. 495-435 AC)
Demócrito de Abdera (460-379 AC) El quinto elemento: éter, éter quintaesencia (hasta 1905)
Aristóteles (384-322 AC)
Geber: Dos elementos (azufre y mercurio). Búsqueda de la piedra filosofal
San Alberto Magno (ca 1193-1280) Arsénico (1250)
Alquimia tardía
Roger Bacon (1214-1294) Henning Brand (1630-ca 1692) Fósforo (1669)
La alquimia en la Edad Media
Alquimia: Historia del padre que dice a sus hijos que ha escondido un caldero de oro en el viñedo (Roger Bacon) Ácido clorhíhidrico, ácido nítrico, ácido sulfúrico. Mezclas: Agua regia. A i Antimonio, i arsénico, é i bi bismuto, fó fósforo. f Alumbre, bórax, crema de tartar (bitartrato potásico), éter, f l i t d fulminato de oro, rojo j d de plomo l (minio, ( i i tetróxido t t ó id de d triplomo), t i l ) pláster lá t de París (acuaplas), sulfuro de bario (primera sustancia luminiscente). Instrumentación de laboratorio. laboratorio Procedimientos de laboratorio: extracción de oro por almagamación, preparación de álcalis a partir de cenizas vegetales vegetales, destilación, destilación mejoras en la preparación de bebidas alcoholicas, perfumes, etc. http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Paracelso (1493-1541): aplicaciones de la alquimia a la ( q ) medicina (iatroquímica).
Philipupus Theophrastus Bombastus von Hohenheim. Nació en Einsiedeln (Suiza) Su padre era médico y alquimista. Recorrió muchos países, desde los 14 años (Ausburg, España, Contastinopla, Italia Rusia) Italia, 1511: Licenciado por la universidad de Viena. Escéptico, polemista, de fuertes convicciones. Gran orador 5 6 Doctorado por la universidad de Ferrara. 1516: 1516: Paracelso (“superior a Celso”). Profesor en Basilea.
Paracelso (1493-1541): aplicaciones de la alquimia a la medicina (iatroquímica). q
En contra de la profesión médica establecida. Quema de libros de los médicos más prestigiosos. prestigiosos Enseñó en alemán. Seguidor de Lutero (religión y filosofía). Continuas mudanzas por motivos profesionales/personales. profesionales/personales Médico del ejército. http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Paracelso (1493-1541): aplicaciones de la alquimia a la medicina (iatroquímica). q
Búsqueda de las fuerzas latentes de la naturaleza. El gran libro de la cirugía (1536). (1536) Identifica la causa de la enfermedad pulmonar de los mineros. Efecto de la mineralización del agua sobre el bocio. Tratamiento de la sífilis con derivados de mercurio. mercurio Tres elementos: sal, mercurio, azufre. Algunos pacientes de prestigio: Johan Frobenius, Erasmo de Rotterdam. Falleció en n Salzburgo, z u g , posiblemente p m n envenenado. n n n . Iba a entrar n al servicio de F Ernst de Baviera.
Paracelso (1493-1541) Muchos han dicho que la alquimia es para fabricar oro y plata. Para mi no es tal propósito sino considerar sólo la virtud y el poder que puede haber en las medicinas. Potencial curativo de las sustancias de la naturaleza (ideas similares a Hipócrates). Identifica el efecto placebo. Todas T d las l cosas son venenosas y nada d es inócuo. i ó Únicamente la dosis determina lo que no es un veneno. La concentración es un concepto fundamental en química. http://www.losavancesdelaquimica.com/ http://www losavancesdelaquimica com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Elementos químicos descubiertos durante la época alquimista
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
¿
¿
Copérnico (1473-1543)
Gilbert (1544-1603)
Bacon (1561-1626)
Kepler (1571-1630)
Descartes (1596-1650)
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Galileo (1564-1642) Método científico Patriarca de la Física Las matemáticas son el alfabeto con el D ha h escrito ell Universo. cuall Dios Mecanicismo: Se estudian fenómenos y no realidades. No se buscan causas, sino leyes que describan diversos fenómenos. Experimentación: Método inductivo frente al método deductivo. Matematización. http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Newton: Él, sólo, una revolución científica
Newton (1642-1727) Padre de la Física
Las ciencias (la física y las matemáticas) en la época de Newton
Pascal (1623-1662)
Johann Bernouilli (1667-1748)
Huygens (1629-1695)
Daniel Bernouilli (1700-1782)
Leeuwenhoek (1632-1723)
Hooke (1635-1703)
Leibniz (1646-1723)
Euler (1707-1783)
La química en el siglo XVII: dominada por la alquimia
Alquimista. qu m sta. Primer intento de reducir la química a la física. Sin éxito
B l (1 Boyle (1627-1691) 1 1) y su escuela l Hooke (1635-1703), Mayow (1641-1679)
Boyle (1627-1691) y su escuela
Creación de un g grupo p de investigación g Aplicación del método científico Experimentos cuidadosos Perfeccionamiento de equipo de laboratorio Trabajo con gases Ley de Boyle (PV = cte) Concepto de elemento químico E Especulaciones l i sobre b la l estructura t t de d la l materia t i Concepto de compuesto químico
Fundación de la Royal Society
La química del siglo XVIII Teoría del Flogisto: Un siglo de retraso conceptual
Black (1728-1799)
Priestley (1733-1804)
Becher (1635-1682) Stahl (1659-1734)
Cavendish (1731-1810)
Scheele (1742-1786)
El nacimiento de la química como ciencia moderna Lavoisier (1743-1794)
Rigor en las medidas Identificación del papel del oxígeno m Nomenclatura Sistematización de los conceptos químicos Ley de la conservación de la masa
Elementos químicos descubiertos en el periodo 1735-1797
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Desde mediados del siglo XVIII: una época dorada
Voltaire (1694-1778) (1694 1778)
Lagrange (1736-1813)
Franklin (1706-1790) (1706 1790)
Laplace (1749-1827)
Linneo (1707-1776) (1707 1776)
Herschel (1738-1822)
D’Alambert (1717-1783) (1717 1783)
Humboldt (1769-1859)
Kant (1724-1804) (1724 1804)
Gauss (1777-1855)
El nacimiento de la química como ciencia moderna
Richter (1762-1807) Ley de las proporciones equivalentes (1791)
Proust (1754-1826) Ley de las proporciones definidas (1797)
Berthollet (1748-1822)
Berthollet: Identificación del equilibrio químico. Nomenclatura química (colaboración con Lavoisier). Identificación de la acción blanqueadora q del cloro. Disolución acuosa de hipoclorito sódico (blanqueador, potabilizador). Proust: El primero que realmente distinguió entre una mezcla y un compuesto químico.
Auguste Comte (1798-1857) La química es una ciencia no-matemática no-matemática” “La (también pronosticó que la astronomía era una ciencia que ya había alcanzado su límite y que era imposible estudiar t di la l composición mp i ió del d l Sol) S l) Jeremias B. Richter (1762 (1762-1807) 1807) “La química pertenece, en su mayor parte, a las matemáticas aplicadas” (Ley de las proporciones equivalentes) Libro de química general (1792) con introducción matemática: aritmética álgebra elemental progresiones i ((aritméticas/geométricas) it éti / ét i ) http://www.losavancesdelaquimica.com/ http://www losavancesdelaquimica com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
El nacimiento de la química como ciencia moderna Daniel D i l Bernoulli B lli interpretó i ó lla presión ió de d un gas (primer ( i modelo d l d de lla teoría í cinética de gases) (1738). Ley de Charles (1787): relación entre volumen/presión y temperatura de un gas. Se anticipó a Dalton (1801) y a Gay-Lussac (1802).
Gay-Lussac (17541850) Ley de las volúmenes definidas
Dalton (1766-1844) Ley de L d las l presiones i parciales i l Ley de las proporciones múltiples Teoría atómica Error en la proporción atómica
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
El nacimiento de la química como ciencia moderna
Berzelius (1779-1848) Composición Sistematización Nomenclatura Teoría de la fuerza vital Compuestos inorgánicos Catálisis Isomería
Avogadro (1776-1856) Volúmenes iguales de todos los gases a la misma presión y gases, temperatura, contienen el mismo número de moléculas (1811)
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
El nacimiento de la química como ciencia moderna
Prout (1765-1850) Liebig (1803-1873) Pa: Múltiplos del H Q í i orgánica Química á i Isomerismo Teoría estructural Química agrícola Química fisiológica
Kolbe (1818-1884) Wöhler (1802-1882) Síntesis de ácido acético Síntesis de urea Síntesis orgánica Isomerismo Ácido salicílico Teoría estructural Aluminio (1827)
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Las relaciones entre la Física y la Química a lo largo de la historia
LA REVOLUCIÓN INDUSTRIAL LA CIENCIA AL SERVICIO DE LA SOCIEDAD LA TÉCNICA Y EL DESARROLLO INDUSTRIAL AL SERVICIO DE LA CIENCIA EL NACIMIENTO DE LA TERMODINÁMICA (RELACIÓN DE LA ENERGÍA TÉRMICA Y LA MATERIA) http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
La Química física influye en los avances de la Sociedad Termodinámica Utilización de las formas de energía: g calor,, electricidad,, mecánica. Fuentes de energía: química, solar, eólica, solar, nuclear, mecánica, mareas, etc… Desarrollo de la Termodinámica: máquina de vapor. La fuente de energía es el carbón (energía química).
Newcomen (1711)
Watt (1774)
El desarrollo de la Termodinámica: La interacción entre la física ((los físicos)) y la q química ((los q químicos). )
Joule M Mayer C Carnot Cl Clausius i (1796-1832) (1814-1878) (1818-1889) (1822-1888)
Kelvin Maxwell Boltzmann (1824-1907) (1831-1879) (1844-1906)
Los principios (leyes) de la termodinámica: Cero: Definición de temperatura. Primero: Conservación de la energía. energía Segundo: Imposibilidad de usar toda la energía (aumento de la entropía). Tercero: T L entropía La t í de d un sólido ólid perfecto f t a 0 K es 0. 0 http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
El desarrollo de la Termodinámica: La interacción entre la física (los físicos) y la química (los químicos). químicos)
Para los físicos de mediados del siglo XIX, la existencia de moléculas era evidente; algunos químicos dudaron de su existencia hasta el siglo XX. XX
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Las necesidades de la industria química a finales del siglo XVIII y principios p p del siglo g XIX
Leblanc (1742-1806)
http://www.losavancesdelaquimica.com/ http://www losavancesdelaquimica com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Las necesidades de la industria química a finales del siglo XVII Sí t i del Síntesis d l ácido á id sulfúrico lfú i Método de las cámaras de plomo (Roebuck, 1746) Método de contacto (Phillips, 1831)
Metalurgia: electrolisis Proceso Bessemer de fabricación de acero (1854)
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Química y electricidad
Volta l (1745-1827) ( ) Davy (1778-1829)
F Faraday d (1791 (1791-1867) 1867)
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Las relaciones entre la Física y la Química a lo largo de la historia El nacimiento de la Química física (y Fisicoquímica)
Faraday
Ostwald
Arrhenius
Van der Waals
Nernst
Química general Química teórica
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Las relaciones entre la Física y la Química a lo largo de la historia Los fundamentos de la Química
Vernon Harcourt (1875)
Química: ciencia p Q práctica,, sin preocuparse p p de los fundamentos. f
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Josiah Willard Gibbs (1839-1903): Un ejemp ejemplo o de las as aplicaciones ap cac ones de las as matemáticas matemát cas
Matemático, inventor del análisis vectorial (simultáneo a ), fundamentos de la termodinámica química q y de la Heaviside), química física. http://www.losavancesdelaquimica.com/ http://www losavancesdelaquimica com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Bunsen (1811-1899) y Kirchhoff (1824-1887)
Química y color Aplicaciones: Pinturas Colorantes Tintes Pigmentos Fotografía Usos en alimentos, cosmética, contrucción, material escolar, industria textil, etc.
LA QUÍMICA Y LOS COLORES Al Algunos colorantes l t naturales t l
Colorantes sintéticos
Reacción de Perkin:
Química y color
Síntesis de índigo (von Baeyer, Baeyer 1882)
CO 2H
CO 2H Br
Br
HO
HO
O
O Br
Fluoresceina (1871)
O
O Br
Eosina
Teoría estructural de la química orgánica Tetravalencia del carbono Explicación del isomerismo (1855) Estructura del benceno (1858) E ( )
Kekulé (1829-1896)
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Teoría estructural de la química orgánica
Couper (1831-1892)
Crum Brown (1838-1922) http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Louis Pasteur (1822‐1895) Estudiante mediocre. Interés por el la pintura, con intención de ser profesor de arte. Interés en la Química tras asistir a clases del Jean‐Baptiste Dumas. Profesor de Química en las Universidades de Estrasburgo (1848), Lille (1854), y Escuela Normal de París (1857). l ld í ( ) Mi b de Miembro d la l Academia A d i de d Ciencias Ci i de d París P í (1862). (1862)
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
APORTACIONES DE PASTEUR A LA QUÍMICA Investigación fundamental en Estereoquímica (la Química en el
espacio tridimensional). Quiralidad: propiedad de los objetos no superponibles con su imagen especular Propiedad de nuestras manos y de muchas moléculas. especular. moléculas Separación mecánica de los dos enantiómeros de sales del ácido tartárico racémico (1844). Relaciona este resultado con la estructura íntima de la materia (a nivel molecular).
Le Bel y van’t Hoff (1874)
Pasteur: el p poder de la experimentación p La suerte favorece a las mentes preparadas Aplicaciones de la investigación básica No existe una categoría de ciencia a la que podamos dar el nombre de ciencia aplicada. Hay ciencia y las aplicaciones de la ciencia, unidas como el fruto a su árbol. Louis Pasteur Pasteur, 1871 http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
El nacimiento de la química como ciencia moderna 1811. Hipótesis p de Avogrado. g Volúmenes iguales g de todos los gases, g , a la misma presión y temperatura, contienen el mismo número de moléculas.
1860
Avogadro (1776 1856) (1776-1856)
Kekulé (1829-1896)
Cannizzaro (1826-1910)
El nacimiento de la química como ciencia moderna
Mendeleev (1834-1907)
1869
Número de Avogadro: número de moléculas en un mol de sustancia. Perrin (1870-1942)
Elementos químicos descubiertos en el periodo 1801-1867
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Meyer(18301895)
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
DIMÍTRI IVÁNOVICH MENDELÉIEV (Tobolsk, 1834 - San Petersburgo, 1907). Químico ruso, creador de la Tabla Periódica de los elementos. Su investigación principal fue la que dio origen a la enunciación de la ley periódica de los elementos base del sistema periódico que lleva su nombre. En 1869 publicó la mayor de sus obras, “Principios de Química”, donde formulaba su famosa Tabla Periódica, traducida a todas las lenguas y que fue lib de libro d texto durante d muchos h años. Se considera a Mendeléiev un genio, no sólo por el ingenio que mostró para aplicar todo lo conocido y predecir lo no conocido sobre los elementos químicos, plasmándolo en su tabla periódica, sino por los numerosos trabajos realizados a lo largo de toda su vida en diversos campos científicos y tecnológicos (agricultura, ganadería, industria petroquímica, etc). Se nombró Mendelevio (Md) al elemento químico sintético de número atómico 101 en homenaje al ilustre químico ruso. El día 2 de febrero de 2007 se cumplió el centenario de su muerte. muerte
1 1
6 941 6,941 +1
Li 11
3
9 0122 9,0122
22,990 +1
Rb 55
+1
137,33
56
Ba
[Xe] 6 CESIO
(223,02) +1
[Rn] 7 s1 FRANCIO
+3
Lu
[Xe] 4f145d16s2 LUTECIO
119
88 (226,03)
Ra
Zr
Lr
+3
5f147s17p1?
[Rn] LAURENCIO
Nb
+4
+3 +5
[Kr] 4d45s1 NIOBIO
95,94
+2 +3 +4 +5 [Kr] 4d55s1 +6 MOLIBDENO
Mo
+5
+2 +3 +4 +6 [Ar] 3d54s2 +7 MANGANESO
Mn
Ru
186,21 76
Re
¿?
5f146d27s2?
[Rn] RUTHERFORDIO
¿?
Db
Sg
5f146d37s2
[Rn] DUBNIO
Bh
5f146d47s2
[Rn] SEABORGIO
¿?
5f146d57s2
[Rn] BOHRIO
Co
+3 +4 +8
+2 +3
[Kr] 4d85s1 RODIO +4 +6 +8
[Xe] 4f145d66s2 OSMIO ¿?
5f146d67s2
[Rn] HASSIO
6
+2 +33
+1 +2 +3 +4
+2 +4
[Kr] 4d10 PALADIO
192,22 78
Mt
195,08 79
Pt
¿?
¿?
5f146d97s1
[Rn] DARMSTADTIO
[Rn] MEITNERIO
+1 +2
26,982 14
112,41
196,97 80
Au
+1 +3
Rg
¿?
+3 +5 -3
+2 +4
Sb
+3 +5 -3
207,2
83
35
208,98 84
79,904 36
53
127,60
(208,98) 85
83,798
Kr
138,91 58
57
La
+3
[Xe] 5d16s2 LANTANO
89
(227,03) 90
Ac
+1 +3
[Rn] 6d17s2 ACTINIO
GASEOSOS
SÓLIDOS
LÍQUIDOS (30ºC)
SINTÉTICOS
140,12 59
Ce
+3 +4
[Xe] 4f15d16s2 CERIO
232,04 91
Th
+4
[Rn] 6d27s2 TORIO
140,91 60
Pr
+3
[Xe] 4f36s2 PRASEODIMIO +3 +4 +5
+3
[Xe] 4f46s2 NEODIMIO
231,04 92
Pa
[Rn] 5f26d17s2 PROTOACTINIO
(144,91) 62
144,24 61
Nd
+3
Pm
238,05 93
+3 +4 +5 +6 [Rn] 5f36d17s2 URANIO
U
(237,05) 94
NO-METAL
+2 +3
[Xe] 4f66s2 SAMARIO
+3 +4 +5 +6 [Rn] 5f46d17s2 NEPTUNIO
Np
150,36 63
Sm
[Xe] 4f56s2 PROMETIO
Tl
113
(285) ¿?
126,90 54
131,29
0 +2 +4 +6 [Kr] 4d105s25p6 +8 XENÓN
(209,99)
86
Xe
Pb
(284) 114
Bi
(222,02)
(289) 115
(288) 116
¿?
¿?
[Rn]5f146d107s27p1
[Rn]5f146d107s27p2
[Rn]5f146d107s27p3
UNUNCUADIO
UNUNPENTIO
Rn
At
Po
(289) 117
118
¿?
¿?
Uut Uuq Uup Uuh Uus Uuo
[Rn]5f146d107s2 UNUNBIO
(244,06) 95
GASES NOBLES
+2 +3
UNUNTRIO
157,25 65 +3
Gd
[Xe] 4f76s2 EUROPIO
+3 +4 +5 +6 [Rn] 5f67s2 PLUTONIO
Pu
151,96 64
Eu
(243,06) 96
(247,07) 97 +3
METALES ALCALINOTÉRREOS
Dy y
+3 +4
SEMICONDUCTOR
* Los valores entre paréntesis se refieren al isótopo más estable ** Los valores de los elementos gaseosos corresponden al líquido a temperatura de ebullición
[Xe] 4f106s2 DISPROSIO
(247,07) 98
Bk
[Rn] 5f97s2 BERQUELIO
[Rn] 5f76d17s2 CURIO
162,50 67 +3
+3
[Xe] 4f96s2 TERBIO
Am Cm
METALES ALCALINOS
158,93 66
Tb
[Xe] 4f75d16s2 GADOLINIO
+3 +4 +5 +6 [Rn] 5f77s2 AMERICIO
0 2 4
I
[Rn]5f146d107s27p4 [Rn]5f146d107s27p5 [Rn]5f146d107s27p6 UNUNHEXIO UNUNSEPTIO UNUNOCTIO
120
[Uuo] 8s2 UNBINILIO
0
[Ar] 3d104s24p6 CRIPTÓN
+1 +3 +5 +7 [Kr] 4d105s25p- 51 YODO
+4 +6 -2
39,948
Ar
Br
[Kr] 4d105s25p4 TELURIO
0
[Ne] 3s23p6 ARGÓN
+1 +3 +5 +7 [Ar] 3d104s24p5- 1 BROMO
+4 +6 -2
Te
[Kr] 4d105s25p3 ANTIMONIO
35,453 18
Cl
78,96
Se
20,180
Ne
[He] 2s22p6 NEÓN
+1 +3 +5 +7 [Ne] 3s23p5 - 1 CLORO
+2 +4 +6 -2
[Ar] 3d104s24p4 SELENIO
121,76 52
118,71 51
Sn
[Kr] 4d105s25p2 ESTAÑO
204,38 82
81
Uub
ROENTGENIO
+3
34
74,922
As
[Ar] 3d104s24p3 ARSÉNICO
-1
F
[He] 2s22p5 FLÚOR
+1 +2 +3 +2 +1 0 +3 +4 +5 +4 +3 2 +5 +7 - 15 [Xe]4f145d106s26p6 [Xe]4f145d106s26p1 [Xe]4f145d106s26p2 [Xe]4f145d106s26p3 [Xe]4f145d106s26p4 [Xe]4f145d106s26p RADÓN POLONIO TALIO PLOMO BISMUTO ASTATO
+1 +2
[Xe] 4f145d106s2 MERCURIO
[Rn]5f146d107s1
114,82 50
In
33
+2 +4
[Ar] 3d104s24p2 GERMANIO
[Kr] 4d105s25p1 INDIO
200,59
Hg
Ge
S
[Ne] 3s23p4 AZUFRE
0
1s2 HELIO
18 998 10 18,998
-1 -2
32,065 17
+3 +5 -3
P
[Ne] 3s23p3 FÓSFORO
72,64
+3
49
+2
Cd
[Xe] 4f145d106s1 ORO
69,723 32
Ga
15 999 9 15,999
O
He
17
[He] 2s22p4 OXÍGENO
30,974 16
15
[Ne] 3s23p2 SILICIO
[Ar] 3d104s24p1 GALIO
14 007 8 14,007
N
+2 +4 -4
Si
16
+2 +3 +4 +5 [He] 2s22p3 - 2 NITRÓGENO- 3
+2 +4 -4
28,086
+3
31
+2
[Kr] 4d105s2 CADMIO
(281) 111 (272,15) 112
Ds
5f146d77s2
Ag
[Kr] 4d105s1 PLATA
+1 +2 +2 +4 +3 +4 [Xe] 4f145d76s2 +6 [Xe] 4f145d96s1 IRIDIO PLATINO
65,409
Zn
12 011 7 12,011
C
[He] 2s22p2 CARBONO
[Ne] 3s23p1 ALUMINIO
[Ar] 3d104s2 CINC
107,87 48
106,42 47
Pd
Ir
+1 +2
Cu
[Ar] 3d104s1 COBRE
15
+3
Al
12
63,546 30
58,693 29
Ni
(277) 109 (268,14) 110
Hs
11
[Ar] 3d84s2 NÍQUEL
102,91 46
Rh
190,23 77
Os
10
[Ar] 3d74s2 COBALTO
[Kr] 4d75s1 RUTENIO
+2 +4 +3 +6 +4 +7 +5 14 5 2 [[Xe]] 4f145d46s2 +6 [Xe] 4f 5d 6s WOLFRAMIO RENIO
W
+2 +3 +66
101,07 45
+4 +6 +7
Tc
[Kr] 4d65s2 TECNECIO
18,811
B
58,933 28
55,845 27
Fe
14
[He] 2s22p1 BORO
9
[Ar] 3d64s2 HIERRO
98,907 44
43
183,84 75
180,95 74
Ta
[Xe] 4f145d36s2 TÁNTALO Á
+2 +33 +6
8
54,938 26
51,996 25
Cr
5
13
7
[Ar] 3d54s1 CROMO
*
Estructura electrónica
(262,11) 105 (262,11) 106 (266,12) 107 (264,12) 108
Rf
Uue Ubn [Uuo] 8s1 UNUNENIO
+2 +3 +4 +5
92,906 42
+4
[Xe] 4f145d26s2 HAFNIO
103 (262,11) 104
+2
[Rn] 7 s2 RADIO
50,942 24
[Ar] 3d34s2 VANADIO
178,49 73
Hf
6
V
[Kr] 4d25s2 CIRCONIO
174,97 72
71
+2
BARIO
+2 +3 +44
91,224 41
+3
Y
[Kr] 4d15s2 ITRIO
[Xe] 6 s2
s1
Ti
[Ar] 3d24s2 TITANIO
88,906 40
39
+2
[Kr] 5 s2 ESTRONCIO
132,91
Fr
Sr
+3
[Ar] 3d14s2 ESCANDIO
87,62
38
+1
Cs 87
Sc
5
47,867 23
44,956 22
21
+2
CALCIO
[Kr] 5s1 RUBIDIO
6
40,078
Ca
[Ar] 4 s2
85,468
37
5
20
+1
[Ar] 4 s1 POTASIO
4
13
Estados de oxidación
**
+2
3
+2 +4 -4
[He] 2s22p2 CARBONO
Nombre
24,305
Mg
MAGNESIO
39,098
K
12
Masa atómica
12,011
C
Símbolo
[Ne] 3s2
[Ne] 3s1 SODIO
6
Nº atómico
+2
Be [He] 2s2 BERILIO
Na 19
8
4
[He] 2s1 LITIO
4,0026
2
TABLA PERIÓDICA DE LOS ELEMENTOS
2
1s1 HIDRÓGENO
3
7
+1 -1
H
2
4
18
1,0079
1
164,93 68 +3
Ho
[Xe] 4f116s2 HOLMIO
(251,08) 99
167,26 69
Er
+3
[Xe] 4f126s2 ERBIO
168,93 70
Tm
+3
[Xe] 4f136s2 TULIO
+3
+3
[Rn] 5f127s2 FERMIO
[Rn] 5f137s2 MENDELEVIO
METALES DE LANTÁNIDOS TRANSICIÓN
ACTÍNIDOS
+3
+3
[Xe] 4f146s2 ITERBIO
(252,08) 100 (257,10) 101 (258,10) 102 (259,10)
[Rn] 5f117s2 EINSTENIO
Cf
[Rn] 5f107s2 CALIFORNIO
173,04
Yb
+3
Es
Fm Md
+3
No
[Rn] 5f147s2 NOBELIO
La química y los alimentos
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
PRODUCCIÓN DE ALIMENTOS
No hay y problemas p de producción p de alimentos en el mundo. El problema es de distribución. Pronóstico de Malthus (1766-1834): la población humana desaparecerá por falta de alimentos (durante el siglo XIX). XIX) Pronóstico equivocado. Campos son mucho más productivos: fertilizantes/abonos, pesticidas, protectores t t d de cosechas, h aditivos diti para cosechas, h etc. t
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
El País, 29 de abril de 2012 http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
EL PAPEL DE LA QUÍMICA EN LA PRODUCCIÓN DE ALIMENTOS
N2 (g) + 3 H2 (g)
2 NH3 (g)
Estudio de las condiciones que influyen en el equilibrio (principio de Le Chatelier) Fritz Haber (1868-1934) (1868 1934) Premio Nobel de Química, 1918
Nitratos
Carl Bosch (1874-1940) Premio Nobel de Química, 1931
Abonos Ab
Cinética química. Catálisis. Reactivos
Productos
Velocidad = k x f(concentración)
Ecuación de Arrhenius
Un catalizador U t li d es una especie i química í i que no se consume durante d t la l reacción y que disminuye la energía de activación (aumentando k).
Las reacciones son de un número pequeño de tipos. Las velocidades de reacción se describen por ecuaciones matemáticas. Reacciones químicas: transferencia de electrones, electrones transferencia de protón, compartición de electrones.
Concepto de equilibrio químico químico: Berthollet, ley de acción de masas (Waage y Guldberg), van’t Hoff,…. Cinética química, catalizadores: Berzelius, Arrenhius, van’t Hoff, O t ld Eyring,…. Ostwald, E i
Aplicaciones: síntesis química (productos de consumo)
http://www.quimica2011.es/ http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
La ciencia a finales del siglo XIX
Gravitación Electromagnetismo Teoría cinética de los gases Ecuaciones de la termodinámica Leyes de la óptica (naturaleza de la luz)
There is nothing new to be discovered in physics now, All that remains is more and more precise i measurement. t Lord Kelvin (finales del siglo XIX)
Sólo quedaban por explicar unos ‘pocos’ fenómenos naturales Radiación del cuerpo negro Espectros de los elementos químicos Efecto fotoeléctrico Descubrimiento del electrón Rayos ayos X Radiactividad Efecto Stokes Movimiento Browniano Estructura del átomo (experimentos de Rutherford)
Interacciones de la materia y la energía
Elementos químicos descubiertos en el periodo 1875-1907
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Los fundamentos de la Química: la mecánica cuántica y la física aplicada a la Química (Química cuántica)
Planck Pl k (1858-1947)
Einstein (1879-1962)
Bohr (1885-1962) Moseley (1887-1915)
Modelo atómico de Bohr (1913)
Los fundamentos de la Química: la mecánica cuántica aplicada a la Química (Química cuántica)
Heissenberg(1 H b (1 Born(1882901-1976) 1972)
Schrödinger (1887-1961)
Dirac (1902-1984) http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Los fundamentos de la Química: la mecánica cuántica aplicada a la Química (Química cuántica)
Pauling (1901-1994)
Mulliken (1896-1986)
Lewis (1875-1946)
Teoría í del enlace de valencia Teoría de orbitales moleculares
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Los conceptos fundamentales de la Química La L materia t i consiste i t de d alrededor l d d de d 100 elementos. l t Los elementos se componen de átomos. La L estructura t t orbitálica bitáli de d llos átomos át (dó d están (dónde tá los l electrones) explica la periodicidad de sus propiedades. Los L enlaces l químicos ími se forman f m cuando d los l electrones l t se emparejan.
DIMÍTRI IVÁNOVICH MENDELÉIEV (Tobolsk, 1834 - San Petersburgo, 1907). Químico ruso, creador de la Tabla Periódica de los elementos. Su investigación principal fue la que dio origen a la enunciación de la ley periódica de los elementos base del sistema periódico que lleva su nombre. En 1869 publicó la mayor de sus obras, “Principios de Química”, donde formulaba su famosa Tabla Periódica, traducida a todas las lenguas y que fue lib de libro d texto durante d muchos h años. Se considera a Mendeléiev un genio, no sólo por el ingenio que mostró para aplicar todo lo conocido y predecir lo no conocido sobre los elementos químicos, plasmándolo en su tabla periódica, sino por los numerosos trabajos realizados a lo largo de toda su vida en diversos campos científicos y tecnológicos (agricultura, ganadería, industria petroquímica, etc). Se nombró Mendelevio (Md) al elemento químico sintético de número atómico 101 en homenaje al ilustre químico ruso. El día 2 de febrero de 2007 se cumplió el centenario de su muerte. muerte
1
6 941 6,941 +1
Li 11
3
9 0122 9,0122
22,990 +1
Rb
+1
Sr
[Kr] 4d15s2 ITRIO
137,33
56
Ba
+3
Lu
+1
4f145d16s2
[Xe] LUTECIO
[Rn] 7 s1 FRANCIO
119
88 (226,03)
Ra
Lr
[Rn] 7 s2 RADIO
+3
+2 +3 +4 +5
Nb
+4
[Xe] HAFNIO
+3 +5
[Kr] 4d45s1 NIOBIO
95,94
+2 +3 +4 +5 [Kr] 4d55s1 +6 MOLIBDENO
Mo
+5
4f145d36s2
[Xe] TÁNTALO Á
+2 +3 +4 +6 [Ar] 3d54s2 +7 MANGANESO
Mn
186,21 76
+2 +4 +3 +6 +4 +7 +5 14 5 2 [[Xe]] 4f145d46s2 +6 [Xe] 4f 5d 6s WOLFRAMIO RENIO
W
Ru
Re
¿?
[Rn] 5f147s17p1? [Rn] 5f146d27s2? LAURENCIO RUTHERFORDIO
¿?
Db
Sg
[Rn] 5f146d37s2 DUBNIO
Bh
[Rn] 5f146d47s2 SEABORGIO
¿?
[Rn] 5f146d57s2 BOHRIO
Co
+2 +3
[Kr] 4d85s1 RODIO +4 +6 +8
4f145d66s2
[Xe] OSMIO
¿?
[Rn] 5f146d67s2 HASSIO
+2 +33
+1 +2 +3 +4
+2 +4
[Kr] 4d10 PALADIO
192,22 78
Mt
195,08 79
Pt
¿?
+1 +2
26,982 14
112,41
[Xe]
+1 +3
¿?
[Rn] 5f146d97s1 DARMSTADTIO
Tl
[Xe] MERCURIO
¿?
+1 +3
113
¿?
+2 +4
Sb
83
+2 +4
[Xe]4f145d106s26p2 PLOMO
(284) 114
BISMUTO
(289) 115
79,904 36
53
+2 +4
POLONIO
0 2 4
126,90 54
131,29
I
0 +2 +4 +6 [Kr] 4d105s25p6 +8 XENÓN
(209,99)
86
Xe
(222,02)
+1 0 +3 2 +5 +7 - 15 [Xe]4f145d106s26p6 [Xe]4f145d106s26p RADÓN ASTATO
Rn
(289) 117
118
¿?
¿?
83,798
Kr
At
[Xe]4f145d106s26p4
0
[Ar] 3d104s24p6 CRIPTÓN
+1 +3 +5 +7 [Kr] 4d105s25p- 51 YODO
(208,98) 85
Po
(288) 116
¿?
¿?
+3 +5
[Xe]4f145d106s26p3
39,948
Ar
Br
+4 +6 -2
0
[Ne] 3s23p6 ARGÓN
+1 +3 +5 +7 [Ar] 3d104s24p5- 1 BROMO
[Kr] 4d105s25p4 TELURIO
208,98 84
Bi
35
127,60
Te
35,453 18
Cl
+4 +6 -2
20,180
Ne
[He] 2s22p6 NEÓN
+1 +3 +5 +7 [Ne] 3s23p5 - 1 CLORO
+2 +4 +6 -2
78,96
Se
+3 +5 -3
-1
F
[He] 2s22p5 FLÚOR
[Ar] 3d104s24p4 SELENIO
[Kr] 4d105s25p3 ANTIMONIO
207,2
Pb
+3 +5 -3
121,76 52
118,71 51
Sn
34
74,922
As
[Ar] 3d104s24p3 ARSÉNICO
[Kr] 4d105s25p2 ESTAÑO
[Xe]4f145d106s26p1 TALIO
(285)
Uub
[Rn]5f146d107s1 ROENTGENIO
+3
204,38 82
81
+1 +2
4f145d106s2
ORO
Rg
114,82 50
In
33
+2 +4
[Ar] 3d104s24p2 GERMANIO
[Kr] 4d105s25p1 INDIO
200,59
Hg
4f145d106s1
Ge
S
[Ne] 3s23p4 AZUFRE
0
1s2 HELIO
18 998 10 18,998
-1 -2
32,065 17
+3 +5 -3
P
[Ne] 3s23p3 FÓSFORO
72,64
+3
49
+2
Cd
196,97 80
Au
69,723 32
Ga
15 999 9 15,999
O
He
17
[He] 2s22p4 OXÍGENO
30,974 16
15
[Ne] 3s23p2 SILICIO
[Ar] 3d104s24p1 GALIO
14 007 8 14,007
N
+2 +4 -4
Si
16
+2 +3 +4 +5 [He] 2s22p3 - 2 NITRÓGENO- 3
+2 +4 -4
28,086
+3
31
+2
[Kr] 4d105s2 CADMIO
(281) 111 (272,15) 112
Ds
[Rn] 5f146d77s2 MEITNERIO
Ag
[Kr] 4d105s1 PLATA
+1 +2 +2 +4 +3 +4 [Xe] 4f145d76s2 +6 [Xe] 4f145d96s1 IRIDIO PLATINO
65,409
Zn
12 011 7 12,011
C
[He] 2s22p2 CARBONO
[Ne] 3s23p1 ALUMINIO
[Ar] 3d104s2 CINC
107,87 48
106,42 47
Pd
Ir
+1 +2
Cu
[Ar] 3d104s1 COBRE
15
+3
Al
12
63,546 30
58,693 29
Ni
(277) 109 (268,14) 110
Hs
11
[Ar] 3d84s2 NÍQUEL
102,91 46
Rh
190,23 77
Os
(262,11) 105 (262,11) 106 (266,12) 107 (264,12) 108
Rf
+3 +4 +8
[Kr] 4d75s1 RUTENIO
[Kr] 4d65s2 TECNECIO
10
[Ar] 3d74s2 COBALTO
101,07 45
+4 +6 +7
Tc
+2 +3 +66
6
18,811
B
58,933 28
55,845 27
Fe
14
[He] 2s22p1 BORO
9
[Ar] 3d64s2 HIERRO
98,907 44
43
183,84 75
180,95 74
Ta
+2 +33 +6
8
54,938 26
51,996 25
Cr
5
13
7
[Ar] 3d54s1 CROMO
92,906 42
+4
4f145d26s2
Uut Uuq Uup Uuh Uus Uuo
[Rn]5f146d107s27p1 [Rn]5f146d107s27p2 [Rn]5f146d107s27p3 [Rn]5f146d107s27p4 [Rn]5f146d107s27p5 [Rn]5f146d107s27p6 UNUNCUADIO UNUNPENTIO UNUNHEXIO UNUNSEPTIO UNUNOCTIO UNUNTRIO
[Rn]5f146d107s2 UNUNBIO
120
Uue Ubn [Uuo] 8s1 UNUNENIO
50,942 24
[Ar] 3d34s2 VANADIO
178,49 73
Hf
6
V
91,224 41
Zr
103 (262,11) 104
+2
+2 +3 +44
[Kr] 4d25s2 CIRCONIO
174,97 72
71
+2
BARIO
(223,02)
Ti
[Ar] 3d24s2 TITANIO
+3
Y
5
47,867 23
+3
88,906 40
39
+2
[Xe] 6 s2
[Xe] 6 s1 CESIO
Fr
Sc
[Ar] 3d14s2 ESCANDIO
87,62
38
4
44,956 22
21
+2
[Kr] 5 s2 ESTRONCIO
132,91
Cs 87
40,078
Ca
CALCIO
[Kr] RUBIDIO
55
20
+1
5s1
6
3
*
Estructura electrónica
**
+2
[Ar] 4 s2
85,468
37
5
24,305
13
Estados de oxidación
[He] CARBONO
Nombre
Mg
+1
[Ar] 4 s1 POTASIO
+2 +4 -4
2s22p2
MAGNESIO
39,098
K
12
Masa atómica
12,011
C
Símbolo
[Ne] 3s2
[Ne] 3s1 SODIO
6
Nº atómico
+2
Be [He] 2s2 BERILIO
Na 19
8
4
[He] 2s1 LITIO
4,0026
2
TABLA PERIÓDICA DE LOS ELEMENTOS
2
1s1 HIDRÓGENO
3
7
+1 -1
H
2
4
18
1,0079
1
1
138,91 58
57
[Uuo] 8s2 UNBINILIO
La
+3
[Xe] 5d16s2 LANTANO
89
(227,03) 90
Ac
+1 +3
[Rn] 6d17s2 ACTINIO
GASEOSOS
SÓLIDOS
LÍQUIDOS (30ºC)
SINTÉTICOS
140,12 59
Ce
+3 +4
[Xe] 4f15d16s2 CERIO
232,04 91
Th
+4
[Rn] 6d27s2 TORIO
140,91 60
Pr
+3
[Xe] 4f36s2 PRASEODIMIO +3 +4 +5
+3
[Xe] 4f46s2 NEODIMIO
231,04 92
Pa
[Rn] 5f26d17s2 PROTOACTINIO
(144,91) 62
144,24 61
Nd
+3
Pm
238,05 93
+3 +4 +5 +6 [Rn] 5f36d17s2 URANIO
U
(237,05) 94
NO-METAL
+2 +3
[Xe] 4f66s2 SAMARIO
+3 +4 +5 +6 [Rn] 5f46d17s2 NEPTUNIO
Np
150,36 63
Sm
[Xe] 4f56s2 PROMETIO
(244,06) 95
GASES NOBLES
+2 +3
157,25 65 +3
Gd
[Xe] 4f76s2 EUROPIO
+3 +4 +5 +6 [Rn] 5f67s2 PLUTONIO
Pu
151,96 64
Eu
(243,06) 96
+3 +4 +5 +6 [Rn] 5f77s2 AMERICIO
(247,07) 97 +3
METALES ALCALINOTÉRREOS
Dy y
[Xe] 4f106s2 DISPROSIO
(247,07) 98 +3 +4
Bk
[Rn] 5f97s2 BERQUELIO
[Rn] 5f76d17s2 CURIO
SEMICONDUCTOR
162,50 67 +3
+3
[Xe] 4f96s2 TERBIO
Am Cm
METALES ALCALINOS
158,93 66
Tb
[Xe] 4f75d16s2 GADOLINIO
164,93 68 +3
Ho
[Xe] 4f116s2 HOLMIO
(251,08) 99
167,26 69
Er
+3
[Xe] 4f126s2 ERBIO
168,93 70
Tm
+3
[Xe] 4f136s2 TULIO
+3
+3
[Rn] 5f127s2 FERMIO
[Rn] 5f137s2 MENDELEVIO
METALES DE LANTÁNIDOS TRANSICIÓN
ACTÍNIDOS
+3
+3
[Xe] 4f146s2 ITERBIO
(252,08) 100 (257,10) 101 (258,10) 102 (259,10)
[Rn] 5f117s2 EINSTENIO
Cf
[Rn] 5f107s2 CALIFORNIO
173,04
Yb
+3
Es
Fm Md
+3
No
[Rn] 5f147s2 NOBELIO
* Los valores entre paréntesis se refieren al isótopo más estable ** Los valores de los elementos gaseosos corresponden al líquido a temperatura de ebullición
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Finales del siglo XIX y primera mitad del siglo XX Medicamentos Anestesia Vitaminas g Síntesis orgánica Productos naturales Biomedicina Las bases químicas de la vida Polímeros (macromoléculas, plásticos) E l i Explosivos Medio ambiente Química del petróleo
La ciencia (la química) del futuro: satisfacer las necesidades de la sociedad
Energía Aspectos sociales
Tecnología
Medio ambiente Nuevos compuestos químicos í i para nuevos retos Salud Ali Alimentación t ió
Sin ciencia no hay futuro Daría todo lo que sé por la mitad de lo que ignoro (Descartes)
Beneficios de la Ciencia para el ser humano Vida más larga. Vida más saludable (curamos enfermedades, hacemos biomateriales, paliamos dolores y achaques). Potabilización de agua. Mejores alimentos. Fertilizantes, abonos, protectores de cosechas, cuidado del ganado. Producción de energía: carbón, petróleo, hidrógeno. Nuestra vida cotidiana: higiene higiene, limpieza limpieza, cosméticos cosméticos, ocio ocio, deporte deporte, seguridad, vestidos , tintes, ….. Alta tecnología: electrónica, electrónica ordenadores, ordenadores nanomateriales,….. nanomateriales
http://www.losavancesdelaquimica.com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
Ap partir de septiembre p de 2015 Síguenos en h // http://www.losavancesdelaquimica.com l d l i i
http://www.losavancesdelaquimica.com/ http://www losavancesdelaquimica com/ http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/
http://www.losavancesdelaquimica.com/ htt // l d l i i / http://www.madrimasd.org/blogs/quimicaysociedad/ http://educacionquimica.wordpress.com/