UNIVERSIDAD NACIONAL DE TUCUMAN FACULTAD DE CIENCIAS EXACTAS Y TECNOLOGIA ELECTROTECNIA GENERAL Y LABORATORIO MODULO 5
Mediciones con Instrumentos Eléctricos
Instrumento Eléctrico: dispositivo que nos permite medir una magnitud eléctrica. magnitud: atributo de un fenómeno, sustancia o cuerpo que puede ser distinguido cualitativamente y determinado cuantitativamente, por ejemplo: longitud. magnitudes eléctricas básicas: intensidad de corriente , tensión , potencia el proceso de medición con los instrumentos eléctricos abarcará dos etapas..........
•selección del instrumento •lectura o medición propiamente dicha Para saber que instrumento usar debemos conocer cuales son sus características principales,como están construidos,como funcionan, las solicitaciones máximas que admiten etc.
Los instrumentos están formados por dos sistemas: •Un Sistema Fijo integrado por un elemento que produzca un campo magnético( imán permanente, o bobina dependerá del tipo de instrumento)cuya función es la de generar un campo magnético. •Un Sistema Móvil que a consecuencia del campo magnético generado por el sistema fijo, se desplaza un ángulo proporcional al módulo de la magnitud a medir.
Sistema Fijo
Sistema Móvil
MAGNITUD A MEDIR
Instrumento de Medición
Ecuación de Cuplas en los Instrumentos eléctricos La Cupla motora: Cm es la que hace que el sistema móvil se desplace un cierto ángulo α.
La Cupla de Inercia, como en todo cuerpo sujeto a la Mecánica Clásica tratará de oponerse al giro del sist. móvil.
Ci = J γ = J
dω d 2α =J dt dt 2
Donde J= Momento de Inercia del sist. móvil, γ = aceleración angular , α =desplazamiento angular, ω= velocidad angular
La cupla directriz o de restitución, que permite que el sist. móvil vuelva a su posición inicial, luego de desconectado el instrumento, dejandólo listo para una nueva medición y que es directamente proporcional al desplazamiento angular α.
Cd = D α D = cte, depende de las dimensiones y del modulo de elasticidad del material del espiral La Cupla amortiguadora cuyo objetivo es moderar la acción de las Cuplas Motora y de restitución para que no dañen el sist. móvil y que es directamente proporcional a la velocidad del sist. móvil
C am = A m
dα dt
Agrupando las cuplas en una ecuación de la siguiente forma:
α
Cupla motora = Suma de cuplas antagónicas
Cm = J
dα d2α A + + Dα m dt dt 2
Ecuación dif. de 2do orden en la variable α , cuya resolución nos permitirá conocer el desplazamientodel sist. móvil ( y de él lo que más nos interesa: la posición de la aguja o índice.) función del tiempo α(t) ,
Expresión generalizada de la respuesta:
α (t )
La obtenemos de la solución de la ec. diferencial planteada y tendrá dos términos: α(t ) = α t + α p
Ec @
αt correspondiente al régimen transitorio dado por la solución de la ec.dif. homogénea, y αp debido al régimen forzado o permanente dado por la solución particular de la ec. dif.
Obtencion de la solución transitoria:
dα d 2α + Dα = 0 J 2 + Am dt dt
Si λ1 = λ2 = raíces reales e iguales: movimiento oscilatorio crítico
la solución de ésta ec. será del tipo:
α = eλt
Si
λ1 y λ2 raíces reales y distintas: movimiento oscilatorio sobreamortiguado
Si λ1 y λ2 raíces complejas conjugadas :movimiento oscilatorio subamortiguado
deflexión subamortiguado αp crítico
t1
sobreamortiguado
t2
tiempo
Graficando los movimientos sobreamortiguado, critico y subamortiguado, vemos que, el que nos proporciona una lectura en el menor tiempo (t1) es el mov. subamortiguado, otra ventaja es que la aguja oscila brevemente sobre la posición de equilibrio, asegurándonos que la misma no se haya trabado. Por eso es que elegimos el movimiento subamortiguado.
Obtención de la solución permanente resolviendo la ec. dif. no homogénea
dα d2α Cm = J 2 + A m + Dα dt dt obtenemos la solución permanente:
αp =
Cm D
αp =
1 c . dt D.T ∫0
donde
Cm
es la cupla motora media
T
Reemplazando las soluciones transitoria y permanente en la expresión generalizada de la respuesta(ec @) y teniendo en cuenta que para un tiempo de lectura del orden de 5 segundos (lo usual para instrumentos eléctricos) la respuesta transitoria ya se ha extinguido, nos queda:
α = αp =
Cm D
Expresión de la respuesta de un instrumento indicador analógico
Tipos de instrumentos según su principio de funcionamiento
•Analógicos
•Digitales
El concepto es: generar una Cupla Bobina móvil que produzca una deflexión del índice o aguja proporcional a la Hierro móvil Electrodinámico magnitud a medir , son de construcción cuidadosa y costosos. están formados por circuitos electrónicos, no tienen partes móviles, son más económicos, entregan un valor numérico.
Instrumento de bobina móvil o magnetoeléctrico •Desarrollado por Weston (1888) •Símbolo representativo: ∩ •Expresión de la respuesta del instrumento: α = K . i •La deflexión angular α0 es directamente proporcional a la magnitud a medir • Tipo de escala: lineal • Apto para tensiones o corrientes contínuas, mide valores medios. Ia~ mA (10-3 A) • Inconveniente: tiene polaridad
mA
Ra~ 10
•Consumo 0,3 a 2 Watt
+ A
-
UAB~ mV
Circuito equivalente del instrumento de bobina móvil
B
Expresión de la respuesta del instrumento: La fuerza actuante en cada uno de los lados de la bobina es : F= N B.l i
La cupla motora es : Cm = C m = F. D = N. B l i D = NBlD i = K i
la respuesta del instrumento
α =
Cm K = i D D
resulta directamente proporcional a la magnitud a medir
Si conocemos el valor de Ia y el de Ra, podemos transformar nuestro amperímetro en un instrumento capaz de medir tensiones o VOLTIMETRO.
Uo = Ia.Ra
Voltímetro Ia
Ra = 10
mA -
+ A
Uo~ mV
B
¿Qué ocurre si al instrumento de bobina móvil le aplicamos una corriente alterna senoidal?
T
1 1 Cm = α= c dt = ∫ D DT 0 DT
T
T
1 d d ∫0 dα (W )dt = D T ∫0 dα (ϕ c I) dt
si la corriente es senoidal I = Imax sen ω t : 1 α= DT
2π
d 1 ∫0 dα (ϕ c Imax sen ω t ) dt = K T
2π
∫I
max
cos ω t = 0
0
La indicación del instrumento de bobina móvil al aplicarle una excitación alterna senoidal es nula.
Valor eficaz de una corriente alterna
Para poder juzgar la magnitud de una corriente eléctrica periódica, se introduce el concepto de valor medio cuadrático de la intensidad en un período y se llama valor eficaz de la corriente alterna.
1T 2 I= i(t ) dt T ∫0
La acción térmica de la corriente (efecto Joule) que es proporcional al cuadrado de la intensidad de la corriente, nos permite relacionar el valor de una corriente periódica con el valor de una corriente contínua. Al circular una corriente de intensidad i(t) (valor instantáneo) por una resistencia de valor R, se disipa una potencia P, esta misma potencia la puede disipar una corriente constante de valor I circulando por la misma resistencia R.
En estas condiciones decimos que i(t) tiene un valor eficaz I equivalente a la corriente constante I
T
T
1 2 2 ∫0 R i(t ) dt = R T T ∫0 i(t ) dt = R I T 2
Buscaremos ahora la relación entre el valor eficaz de la corriente y la amplitud Im de una corriente periódica sinusoidal:
i(t ) = Imáx sen(ωt + ϕ ) T
2 Imáx 1 2 I = ∫ i dt = T0 T 2
⇒
T
2 Imáx ∫0 sen (ωt + ϕ ) dt = 2T 2
I=
Imáx 2
para la tensión el valor eficaz es: T
1 2 U= u dt = ∫ T0 U=
Umáx 2
T
2 Imáx ∫0 [1 - cos(2 ω t - ϕ )] dt = 2
Instrumento de Hierro Móvil •Desarrollado por Ayrton y Perry (1882) •Símbolo representativo: •Expresión de la respuesta:
α = k. I2
• Mide valores eficaces •Apto para tensiones, corrientes y potencias alternas y contínuas •Muy robusto y económico •Consumo 1 Watt
Imáx ≅ 100 A
I bobina fija
Umáx ≅ 750 V Circuito Eléctrico Equivalente del Instrumento de Hierro Móvil
La cupla motora se genera al alimentarse la bobina fija, esta se magnetiza y atrae al hierro móvil el cual al desplazarse mueve la aguja que está unida a él. El sistema evoluciona de manera de aumentar su energía magnética:
Analizamos la respuesta para corriente alterna:
i = 2 I sen ω t
siendo I el valor eficaz de la corriente
el sistema mecánico no puede seguir las oscilaciones de frecuencia doble y responde a la cupla media:
Cm CA
C m CA
1T = ∫ c m CA dt T0
1 dL 2 1 T dL 2 1 T dL 2 1 dL 2 I dt I cos 2 t dt I 2 I = = = ω π 2T ∫0 dα 2T ∫0 dα 4π dα 2 dα la segunda integral es igual a cero:
C m CA =
1 dL 2 I 2 dα
donde I es el valor eficaz de la corriente
reemplazando el valor de cupla motora obtenido en la expresión de la respuesta:
α=
C mCA 1 dL 2 I = k I2 = D 2D dα
Instrumento Electrodinámico
• Desarrollado por Weber (1843) luego Joule, Kelvin, Rayleigh y Siemens. α
•Símbolo representativo: •Expresión de la respuesta: α = k. I2
• Mide valores eficaces •Apto para tensiones corrientes y potencias, alternas y contínuas If
bobina fija
•Consumo 1 a 2 Watt Im
Imáx ≅ 20 A
Umáx ≅ 750 V
bobina móvil
Circuito Eléctrico Equivalente del Instrumento Electrodinámico
Expresión generalizada de la respuesta Determinaremos la Cupla motora como la derivada de la energía magnética del sistema:
1 1 W = L f i f2 + L m i 2m + M i f i m 2 2 C=
dW dα
Como las inductancias propias y las corrientes las consideramos independientes de la posición:
Cm = if i m
dM dα
ec. 1
reemplazando en la ecuación diferencial general:
dM dα d 2α + D α = Cm = i im J 2 + Am f dα dt dt
Si la corriente es alterna: la Cupla motora actuante es:
i f = 2 If sen ωt
reemplazando ambas en la ecuación de la cupla motora (ec. 1)
im = 2 Im sen ( ωt - β)
Cm = i f i m
dM dM = 2 If Im sen ωt sen (ωt - β ) . dα dα
integrando la ec. anterior para hallar la Cupla media:
C m = k I f I m cosβ donde βˆ es el ángulo comprendido entre I f e I m
suponemos
dM = k = cte dα
Utilización del Instrumento Electrodinámico como Voltímetro : para tensiones alternas
I=I F=I
m
=
Z V = R 2V + ω 2 (L F + L m )
U Zv
2
representa la impedancia del voltímetro
IF =Im
bobina fija
Cm = k IFIm cosβ bobina móvil
º C kIF Im cos β k U2 cos 0 m = = k CA U2 = α= 2 D D D Zv
U tensión a medir Resistencia multiplicadora
la respuesta del instrumento es cuadrática Circuito Eléctrico Equivalente del Instrumento Electrodinámico
Utilización del Instrumento Electrodinámico como Amperímetro:
para corriente alterna
Cm = k I
F
I m cosβ
º C k IF Im cos β k I2 cos 0 m α= = = = k CA I2 D D D
corriente a medir
respuesta cuadrática
I = IF = Im
U
bobina fija
bobina móvil
Utilización del Instrumento Electrodinámico como Wattímetro(medición de potencia)
If
bobina fija
Im
+ U
I
1
+ bobina móvil
~ Fuente
Carga
-
-
Sentido del flujo de Potencia La bobina fija se conecta en SERIE(como si fuera un amperímetro) con la carga cuya potencia se quiere medir constituyendo el circuito de corriente y la bobina móvil se conecta en PARALELO(como si fuera un voltímetro) con la carga Im por Kirchoff en el nodo 1 If = I + Im U β
en el fasorial hallamos la suma de las proyecciones de las corrientes sobre la tensión U
ϕ
If cosβ = Im + I cos ϕ I
U pero Im = Rv
If
C k I I cos β k Im (Im + I cos ϕ ) k( Im2 + Im I cos ϕ ) k U 2 U I cos ϕ α = m = F m = = = 2 + D
siendo P = U I cosϕ
U2 pv = Rv
D
D
D
D Rv
Rv
la potencia activa consumida por la carga en watt la potencia consumida en el sist fijo o voltimétrico del wattímetro
si despreciamos la potencia pv nos queda:
α =
k P = k1 P D Rv
Observar que en este caso la indicación del instrumento es linealmente proporcional a la potencia medida
Esquema de conexiones de un circuito eléctrico:
Dada una carga queremos conocer la tensión, corriente y potencia que consume:
I A
W +
+ Fuente
∼
V -
U Carga -
Instrumentos Digitales Estan formados por un circuito electrónico el cual mediante un display indica el valor de la magnitud a medir. Entregan un valor numérico que es el módulo de la magnitud a medir Características Principales: Alcance: normales 10 A , 1000 V Precisión: normales 0,5 a 1,5 % (especiales 0,005 -0,08 %) Resolución: es el cambio más pequeño en la magnitud a medir que puede detectar el instrumento. ejemplo: una resolución de 1mV en la escala de 1000V nos indica que el instrumento detectará una variación de 10-3 V, cuando estemos trabajando en esa escala.
Principio de funcionamiento:
Instrumento tipo rampa: mide el tiempo que tarda en elevarse una rampa de tensión desde cero hasta la tensión a medir y “traduce” ese tiempo a Volts.
tensión a medir
tiempo tiempo
Definiciones y Conceptos Generales: Alcance: es el valor de la magnitud a medir que produce la deflexión de la aguja (o indice) hasta el valor máximo indicado en la escala del instrumento.
Constante = k =
Alcance n ° de divisiones de la escala
Clasificación de las Mediciones: 1) Medición Industrial: se privilegia la rapidez, ya que en función del resultado de la medición el ingeniero debe tomar una decisión. Para poder compatibilizar la rapidez requerida con un grado de exactitud aceptable, se siguen procedimientos para medir, establecidos por Normas: Iram, IEC, ISO, BS, VDE, etc. 2) Medición de Laboratorio: el Científico privilegia la exactitud pasando a segundo plano el tiempo y el costo. Evaluación de la Medición Industrial: Como ya se puntualizó el objetivo fundamental que se persigue en este tipo de medición es la rapidez.
Para cumplir con esa premisa se elaboró una idea simple que, considere los errores cometidos por los instrumentos de medida, tanto los sistemáticos, variaciones de las magnitudes de influencia, como los errores aleatorios, a través de un parametro metrológico constante.
Se ha denominado a dicho parámetro Clase de Exactitud, que permite garantizar el error cometido por el instrumento y agrupar a los instrumentos por su Índice de Clase
C: 0,05 - 0,1 - 0,2 - 0,5 - 1 - 2 - 5
Error de Clase:
e clase =
C.A 100
Donde C es la clase del instrumento y A es el alcance
Error de apreciación: Tiene características subjetivas, pues depende de la forma en que el observador aprecia la posición del índice en la escala. En general un observador puede estimar un valor de la apreciación δ comprendido entre 1/2 y 1/10 de la menor división de la escala.
e ap = k . δ El error total o incertidumbre de un instrumento analógico está dado por:
I a = e clase + e ap
En los instrumentos digitales el error se toma como una unidad en el ultimo digito del valor leido. Por ej. U = 124 V ( 1V)
Error de paralaje: Se produce como consecuencia de la falta de perpendicularidad entre la línea de visión y el índice. Se elimina incorporando un espejo en la escala de modo que al medir coincidan el índice y su imagen.
ERROR ABSOLUTO (x): El error absoluto del resultado de unas medidas es la mitad del intervalo de valores en que, según las medidas, estará el verdadero valor de la magnitud física. ∆X = X − X
Los errores absolutos se escriben precedidos por el signo ± y seguidos de sus unidades. Así, por ejemplo, un valor de error absoluto sería: ± 0.1 V. El error absoluto indica cómo es de bueno nuestro conocimiento de una magnitud física, pero es poco útil para comparar el conocimiento que tenemos sobre dos o más magnitudes.
Así, si medimos dos tensiones 1 V y de 1 mV. con el mismo error absoluto de 0.1 V, es evidente que conocemos con más precisión la primera, y el error absoluto no sirve para expresarlo. Para evitar esta limitación del error absoluto, definimos: ERROR RELATIVO (∆x / x): El error relativo es el cociente entre el error absoluto y el valor del centro del intervalo. Al error relativo se le denomina también “precisión de la medida”. El error relativo carece de unidades y suele expresarse en %: ∆X 100. X
ORIGEN DE LOS ERRORES
ERRORES DEL EXPERIMENTADOR.
No hay una regla general para detectar y corregir estos tipos de errores. Como son más difíciles de detectar que de corregir, el experimentador deberá analizar en cada experimento las hipótesis implícitas en el método de medida que utiliza y verificar si son ciertas. En ese caso, los errores suelen provenir de las hipótesis que el experimentador hace, muchas veces inconscientemente sobre: 1. Cómo es el sistema físico que estudia: por ejemplo, suponer que un alambre es un cilindro perfecto. 2. Cómo afecta el aparato de medida al sistema físico: por ejemplo, suponer que al medir la temperatura de un pequeño recipiente de agua con un termómetro, aquella no resultaría afectada por la temperatura inicial de éste.
ERRORES DE LOS APARATOS DE MEDIDA. CUALIDADES DE LOS APARATOS
RESOLUCIÓN: Es la mínima división de la escala del aparato. Por ej.: V= 0,5 V. En un voltímetro. I=0.01 A en cierto amperímetro.... SENSIBILIDAD: Es el número de divisiones de la escala que recorre el indicador del aparato cuando la magnitud a medir varía en una unidad. Por ejemplo.: 100 V-1 en el voltímetro. 10 m A-1 en el amperímetro. En todos los aparatos existe una variación mínima de la magnitud que no es apreciada por el aparato y se denomina “umbral de sensibilidad”. Obviamente es menor que la resolución. FIDELIDAD: Es la cualidad del aparato de dar el mismo resultado siempre que se mide la misma magnitud física en las mismas condiciones experimentales y distintas condiciones ambientales del aparato (temperatura, tensión de alimentación, ...). PRECISIÓN: Es la característica que nos indica globalmente el error debido al umbral de sensibilidad y la falta de fidelidad del aparato. Se suele dar como un tanto por ciento del fondo de escala (F.E.). Por ejemplo: un amperímetro de precisión 2% del F.E.
EXACTITUD: Es la cualidad de un aparato que indica que es preciso y está bien calibrado. Sólo un aparato exacto permite medidas exactas, pero la exactitud de ambos está limitada por la precisión del aparato.
MEDICIONES DIRECTAS E INDIRECTAS DIRECTAS: Son aquellas en las que la magnitud física se mide mediante un aparato específico. Ejemplo: Tensión con un voltímetro, Corriente con un amperímetro INDIRECTAS: Son aquellas en las que la magnitud física se mide mediante aparatos que miden directamente magnitudes relacionadas con la magnitud de interés. Ejemplo: Medición de resistencia
Conexión Corta
Conexión Larga Conexión Larga
Las 10 Características de los instrumentos que utilizaremos y que debemos tener en cuenta •¿Qué magnitud necesito medir?: ¿tensión?, ¿corriente?, ¿potencia? ⇔ instrumento adecuado •¿Es CA o CC? ⇔ principio de funcionamiento ¿puedo utilizar el instrumento que elegí? •El instrumento elegido: ¿admite la solicitación que le voy a aplicar? ⇔ Alcances •¿Qué error estoy dispuesto a admitir al medir ? ⇔ clase •Posición de lectura •Apreciación •Cálculo de la constante del instrumento •Marca ⇔ si tengo que repetir el ensayo ¿puedo identificar que instrumento utilicé? •Número: ídem anterior •Tensión de ensayo
Símbolos que encontraremos en los instrumentos
instrumento de bobina móvil instrumento de hierro móvil instrumento de electrodinámico
∼ _
apto para corriente alterna “ “ “ contínua
posición de lectura horizontal ⊥ “ “ “ vertical 2
tensión de ensayo 2 kV