ESTRUCTURA Y DUPLICACIÓN DEL MATERIAL GENÉTICO Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
LOS ÁCIDOS NUCLEICOS COMO MATERIAL GENÉTICO
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Los Ácidos Nucleicos • 1- Ácido Desoxiribonucleico (ADN) • 2- Ácido Ribonucleico (ARN) Ambos existen en todos los seres vivos con excepción de los virus donde se presenta uno de los dos Constituyen alrededor del 1% del peso de la célula
Almacenar Funciones
Reproducir Transmitir Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
INFORMACIÓN GENÉTICA
Historia Los ácidos nucleicos fueron descubiertos en 1865 por Miescher, médico suizo que encontró una sustancia rica en P en el núcleo de las células y la llamó “Nucleina” En 1905 Levene determinó la composición química En 1924 Feulgen desarrolló una técnica para teñir selectivamente el ADN y estableció que el ADN es el principal componente de la nucleína En 1935 Brachet y Casperson determinaron que el ADN se encuentra en el núcleo y el ARN en núcleo y citoplasma (actualmente se sabe que hay pequeñas cantidades de ADN también en mitocondrias y cloroplastos del citoplasma) En 1928, Griffith (médico y bacteriólogo inglés) realizó una importante experiencia que dio origen al llamado Efecto Tansformador o Efecto Griffith En 1944 Avery y colaboradores determinaron que el ADN es el responsable de la herencia En 1953 James Watson y Francis Crick determinaron la estructura del ADN (Premio Nobel en 1964)
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Griffith (1928) Trabajó con neumococo, bacteria que produce la neumonia COLONIAS LISAS (S) VIRULENTAS producen la neumonia poseen una cápsula de polisacáridos que las protege de la reacción de defensa (fagocitosis) de los organismos donde se introducen
RUGOSAS ( R ) NO VIRULENTAS no tienen cápsula
virulentas Bacterias capsuladas
Colonias lisas (S)
No virulentas Bacterias no capsuladas Colonias rugosas ( R ) La capacidad de formar o no la cápsula está codificada en el ADN Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Experiencia 1. Inoculó un lote de ratones con bacterias de una colonia rugosa ( R ) vivas 2. Inoculó otro lote de ratones con bacterias de una colonia lisa (S) previamente muertas por calor 3. Inoculó un tercer lote de ratones con una mezcla de estos dos inóculos
Resultados 1. Los dos primeros lotes no fueron afectados por la inoculación 2. Los ratones del tercer lote contrajeron neumonía y murieron
De ellos se aislaron bacterias vivas del tipo S
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Griffith postuló que “ALGO” de las bacterias muertas de las colonias S se transmitió a las bacterias vivas de las colonias R y las transformó en virulentas
A este fenómeno se lo llamó EFECTO GRIFFITH y actualmente se conoce como TRANSFORMACIÓN
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Efecto Tansformador o Efecto Griffith
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
En 1944, Avery, Mac Lead y Mc Carty, demostraron que el principio transformador era el ADN Repitieron la experiencia de Griffith Luego trataron el extracto de ADN de las bacterias S con diversas enzimas (Proteasa, Lipasa, Hidrolasa, ARNasa y ADNasa) Cuando a la mezcla se le introducía ADNasa, los resultados se modificaron: los ratones no morían Solamente se perdía el efecto transformador por acción de la ADN asa LLegaron a la conclusión que el compuesto responsable del efecto transformador era el ADN
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
El ADN es el material hereditario
El ADN es el responsable de la herencia
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Composición Química de ADN-ARN Macromoléculas de elevado peso molecular Polímeros de subunidades llamadas Nucleótidos NUCLEÓTIDOS (monómeros)
Grupo Fosfato (ácido fosfórico) Azúcar (pentosa) Base Nitrogenada
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
ADN-ARN AZÚCAR Y BASE NITROGENADA
NUCLEÓSIDO
NUCLEÓSIDO Y ÁCIDO FOSFÓRICO
NUCLEÓTIDO
D RIBOSA
AZÚCAR
D2 DESOXIRIBOSA
PURICA (ADENINA , GUANINA)
BASE NITROGENADA (rica en N)
Grandes (7A) con dos anillos heterocíclicos
PIRIMIDINICA (CITOSINA, TIMINA, URACILO) Pequeñas (4A) con un anillo heterocíclico Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Tipo ácido nucleico
H3PO4 ácido fosfórico
Pentosa
Base nitrogenada Púrica / Pirimidinica
Cadena
ADENINA CITOSINA ADN
Sí
D2 desoxiribosa GUANINA
Doble TIMINA
ADENINA CITOSINA ARN
Sí
D ribosa
Simple GUANINA URACILO
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
ADN Bicatenario D2 desoxiribosa Timina
ARN Monocatenario D ribosa Uracilo
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Tipos de ARN
Se sintetizan en el núcleo a partir del ADN y se dirigen al citoplasma
ARNm (mensajero) ARNt (de transferencia) ARNr (ribosomal) El ARN m tiene una vida corta El ARN t y el ARN r tienen vida estable En algunos virus el ARN sirve como material genético (no poseen ADN) Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
En 1953 Watson y Crick determinaron
La estructura tridimensional del ADN Con este descubrimiento se logra casi inmediatamente comprender el funcionamiento y modo de replicación del ADN
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Estructura del ADN
Postulados de Watson y Crick • Doble cadena (unidas por puentes Hidrógeno) • Helicoidal • Dextrógira (se enrolla alrededor del eje hacia la derecha) • 20 Å de diámetro • Distancia entre azúcar y azúcar: 11 Å • Distancia entre giro y giro: 34 Å • Distancia entre bases apiladas: 3,4 Å = entre giro y giro → 10 pares de bases Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
El ácido fosfórico tiene 3 grupos ácidos con uno de los cuales se une a la pentosa, al C5’ de la pentosa
El azúcar se une por su C1 al N9 de la base púrica o al N1 de la pirimidínica
Los nucleótidos se unen entre sí para formar una cadena por uniones fosfodiéster (ácido + alcohol = éster) entre el C5’ y el C3’ de los azúcares enlazados por el ácido fosfórico
De esta manera la cadena tiene un eje determinado por las uniones 5’→3’ del ácido fosfórico y las pentosas y perpendicular al eje se apilan las bases
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
El ADN está formado por 2 cadenas enrolladas a la derecha alrededor del mismo eje central
Las 2 cadenas son antiparalelas porque las uniones 5’→3’ fosfodiéster de una cadena tienen direcciones opuestas a las de la otra cadena
Las bases están apiladas en el interior de la hélice en un plano perpendicular al eje horizontal (como una escalera caracol donde los peldaños son las bases y el pasamanos las cadenas fosfodiéster)
Debido a que entre los dos azúcares de las cadenas opuestas existe una distancia fija de 11 A solo pueden acomodarse una base grande púrica (7 A) y una chica pirimidínica (4 A) que son A---T con 2 puentes hidrógeno y C---G con 3 Por ello una cadena es COMPLEMENTARIA de la otra Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
La suma de las bases púricas es igual a la suma de las bases pirimidínicas A+G=T+C
Ambas cadenas están unidas entre sí por los puentes hidrógeno establecidos entre las bases
Entre los pares de bases hay una distancia de 3,4 A La molécula de ADN forma una espiral y cada giro tiene una longitud de 34 A e incluye 10 pares de bases nitrogenadas
El diámetro de la molécula es de 20 A La configuración tridimensional determina la existencia de 2 surcos exteriores, uno ancho entre giro y giro y uno angosto entre cadena y cadena Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
La complementariedad de las cadenas
La distancia entre los azúcares (11 Å) y el tamaño de las bases nitrogenadas Bases Púricas:7Å ( Adenina y Guanina) Bases Pirimidinicas: 4 Å (Timina y Citosina)
El número de puentes Hidrógeno que hay entre las bases nitrogenadas CΞG A=T
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
P ÁCIDO FOSFÓRICO
AZ AZÚCAR
B BASE
3’ AZ
B
B
5’ AZ
P
P
AZ
B
B
AZ P
P AZ
B
B
AZ P
P 5’
AZ
B
B
AZ PUENTE HIDRÓGENO
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
3’
La información genética se asienta en la SECUENCIA de las bases nitrogenadas
A =T T =A CΞG CΞG A=T A=T T=A
La única diferencia entre los ADN de las distintas especies está dada por el ordenamiento o SECUENCIA de las bases en la cadena
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
ADN
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Duplicación del ADN
Teoría conservativa Teoría dispersiva Teoría semiconservativa
Teoría semiconservativa Es la que se acepta actualmente (propuesta por Watson y Crick)
Cada molécula nueva que se origina está constituída por una cadena vieja y otra nueva sintetizada a partir de los 4 nucleótidos presentes en el medio
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Esquema semiconservativo de duplicación del ADN
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Duplicación del ADN La síntesis de ADN se produce siempre en el sentido 5’→3’. Significa que los nuevos nucleótidos se agregan en el extremo 3’ de la cadena que crece
Una
cadena crece en forma continua: cadena lider o adelantada; mientras la otra se sintetiza de a fragmentos cortos: cadena retrasada o discontinua
Todas las polimerasas conocidas añaden nucleótidos en la dirección 5’→3’ Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Fases de la Duplicación del ADN • • • •
1. Inicio 2. Desenrrollamiento 3. Elongación 4. Terminación
Se trata de un proceso muy complejo regulado por numerosas enzimas
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Comienza con la ruptura de los puentes hidrógeno, por acción de enzimas llamadas deshidrogenasas
A continuación se produce el desenrollamiento de la molécula de ADN, realizado por enzimas llamadas helicasas Encontrándose disponibles los nucleótidos necesarios, y por medio de la ADN polimerasa, estos se van uniendo en dirección 5’→3’ por complementariedad de bases sobre el molde de la cadena original La ADN polimerasa para funcionar necesita una cadena molde, un cebador o primer que es una molécula de ARN con su extremo 3’ libre y los 4 nucleótidos trifosfato Esta enzima solo puede pegar nucleótidos al grupo 3’ del cebador y por eso la síntesis de ADN solo se produce en dirección 5’→3
Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
En la cadena de replicación discontinua, por acción de las ligasas se unen pequeños segmentos de nucleótidos que se conocen como Fragmentos de Okasaki (en honor a su descubridor) de 100 a 200 nucleótidos de dirección siempre 5’→3’ que después despegan el cebador de ARN y son unidos entre sí por acción de una ligasa 3’ 5’
Cadena retrasada o discontinua se sintetizan fragmentos cortos
5’ 5’
3’
3’ 5’ 3’ 5’ 3’
3’
3’
5’
5’ Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT
Cadena lider o adelantada Se enfrenta a la ADN polimerasa por su extremo 3’ y se forma una cadena complementaria continua
Bibliografía • PIERCE, B. Genética. Un enfoque conceptual. 2005. Ed. Médica Panamericana. • SÁNCHEZ-MONGE, E. Y N. JOUVE. 1989. Genética. Ed. Omega. Barcelona. • SINNOTT, W. E. L. C. DUNN Y T. DOBZHANSKY. 1977. Principios de Genética. Ed. Omega. Barcelona. • SNYDER, L. H. 1952. Los Principios de la Herencia. Ed. Acma. Buenos Aires. • SRB, A. M.; R. Q. OWEN Y R. S. EDGAR. Genética general. 1968. Omega. • TAMARIN, R. Principios de Genética. 1996. Reverté S. A. Cátedra de Genética - Facultad de Agronomía y Zootecnia - UNT