FACULTA DE INGENIERIA
Elementos de Perforación
TEMA 2 Principales componentes del equipo de peroración Objetivo: El alumno identificará el funcionamiento e interrelación de los sistemas que constituyen el equipo de perforación rotatorio.
1. 2. 3. 4. 5. 6.
Sistema de suministro de energía. Sistema de izaje. Sistema de circulación. Sistema rotatorio. Sistema de control. Sistema de medidor de parámetros de perforación.
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Objetivo: Aportar los medios para levantar y bajar la sarta de perforación, la tubería de revestimiento y otros equipos sub superficiales, para realizar conexiones y viajes. El sistema de izaje es un componente vital de un equipo de perforación. Este sistema suministra un medio por el cual se da movimiento vertical a la tubería que esta dentro del pozo; esto es, bajar y sacar la sarta de perforación y la T.R. Los principales componentes de este sistema son: Ø Mástil y subestructura. Ø El malacate. Ø La corona y la polea viajera (sistema de poleas). Ø El cable de perforación. Ø Equipo auxiliar tal como elevadores, gancho, etc.
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Componentes
Componentes del sistema izaje.
Componentes de izaje
Corona
Línea viva Línea muerta Malacate Ancla Polea viajera Carrete del cable
Gancho
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Mástil
Las torres convencionales son unas pirámides de cuatro lados construidas en acero estructural y pueden ser portátiles o fijas. Las fijas están en desuso y las portátiles se conocen como mástil. Evolución de las torres de perforación.
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Mástil
Mástil, Es una estructura de acero con capacidad para soportar todas las cargas verticales, cargas excedentes y el empuje por la acción del viento. La longitud de estos varía de 24 a 57 m y soportan cargas estáticas de 125 a 1,500 tons. Por su construcción se dividen en:
Voladizo
Plegable
Telescópico
Altura capacidad
9 a 12 m
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Mástil
Consideraciones para el diseño del mástil: 1.
El mástil debe soportar con seguridad todas las cargas (jalón) y cargas que excedan la capacidad del cable.
2.
Deberá soportar el empuje máximo por la velocidad del viento.
3.
La plataforma de trabajo tiene que estar a la altura apropiada para el buen manejo de la tubería (lingadas).
La capacidad del mástil (CM) se obtiene con la siguiente fórmula: Carga suspendida (Cs) x Número de líneas corona (N)
CM =
Eficiencia (E) x Número de líneas en polea viajera (n)
+ Peso de corona (Pc) + Peso polea viajera (Ppv)
Donde: E = Carga real / Carga equivalente
Ej. Determine la capacidad de un mástil (de dos piernas) si la carga a levantar (carga muerta) es de 375,000 lbs, teniendo un arreglo de 6 líneas en la polea viajera, 8 en la corona, una eficiencia del 85% y un peso de la corona y la polea viajera de 12,000 lbs.
CM =
375000 x 8 (0.85 x 6)
+ 12000 = 600,235 lbs
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Subestructura
Subestructura. La subestructura se construye de acero estructural y las cargas que debe soportar son superiores a las que soporta el mástil, ya que además de soportar al mástil con su carga, soporta al malacate, a la mesa rotaria, el piso de trabajo y debe tener una altura suficiente para permitir la instalación del conjunto de preventores y la línea de flote.
FACULTA DE INGENIERIA 2.
Sistema de izaje
MALACAT E
Elementos de Perforación
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Malacate
Malacate. Es el elemento que utiliza la energía del sistema de potencia para aplicarle una fuerza al cable de perforación. Esta provisto de un sistema de frenos para controlar las altas cargas y un sistema de enfriamiento para disipar el calor generado por la fricción en las balatas. El tambor del malacate tiene un ranurado (lebus) para acomodar el cable de perforación.
Componentes Embrague
Cabrestante Tambor elevador Frenos
Tambor principal.- Es el que transmite la fuerza al cable de perforación y realiza la acción de subir o bajar la polea viajera. Cabrestante.- . Son tambores colocados a ambos lados del malacate y son usados para realizar operaciones rutinarias. Frenos.- Son unidades importantes ya que de ellos depende parar el movimiento. El freno principal de un malacate es mecánico del tipo de fricción (tambor o disco). Para reducir el calor generado por los frenos de fricción se utilizan frenos auxiliares que ejecutan una gran parte de la acción de frenar.
Embrague.- Se usa para acoplar mecánicamente el tambor elevador con la fuerza transmitida.
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Malacate
Sistemas auxiliares de frenado. Los equipos mecánicos utilizan un freno auxiliar del tipo hidromático, el cual trabaja impulsando agua en dirección opuesta a la rotación del tambor principal. Los equipos eléctricos usan un freno auxiliar del tipo electromagnético en el cual se generan dos campos magnéticos opuestos cuya magnitud depende de la velocidad de rotación.
Capacidades
Ranurado lebus
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Malacate
El sistema de frenos de fricción del carrete del malacate es importante para la correcta operación. Sus requerimientos generales son: v Seguridad y confiabilidad v Efectividad v Facilidad de mantenimiento La seguridad y la confiabilidad, se obtiene con diseños cuidadosos. Para que un sistema de frenado sea efectivo debe tener las siguientes características: Ø Debe reducir la fuerza que debe ser aplicada para operar el freno. Ø Debe relevarse así mismo conforme el carrete empieza a girar en la dirección de levantamiento. La fuerza de frenado del malacate proporciona una ventaja mecánica muy alta, permitiendo que el frenado, aún para grandes cargas, se realice con una fuerza manual razonable aplicada sobre la palanca de operación del freno. Se dice que un sistema de frenado esta bien calibrado, cuando el peso de la polea viajera es sostenido únicamente con el peso de la palanca.
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Malacate
Dimensiones del tambor elevador Como la clasificación del malacate y el diámetro del cable de perforación están relacionados, el diámetro del tambor elevador debe aumentar con la capacidad del equipo. El uso de un tambor de menor capacidad de la requerida causaría esfuerzos máximos en el cable, dañándolo y acortando su vida útil. El diámetro mínimo del tambor debe ser de 24 veces mayor que el diámetro del cable. La longitud del carrete deberá estar en función a una lingada de tubería, de tal manera que se maneje sin que la línea enrollada en el carrete, sea mayor de tres camas. Si existen más de tres camas ocurrirá una abrasión sobre el cable.
l d
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Malacate
La longitud del tambor elevador puede ser obtenida con la siguiente fórmula:
Lc =
Ll x N x Dc 6π x Rt
+ 9 (pg); Donde:
Dt = 24 Dc
Lt Ll N Dc Rt Dt
longitud del tambor (pg) longitud de la lingada (pug) número de líneas en el gancho diámetro del cable (pg) radio del tambor (pg) diámetro del tambor (pg)
Ej: Cuál deberá ser la longitud del tambor elevador para un equipo de perforación que opera con 6 líneas en la polea viajera, si la longitud de la lingada es de 29 m y el diámetro del cable de perforación es de 1 1/8” pg?. Dt = 24 Dc = 24 x 1.125 = 27 pg Rt = Dt / 2 = 13.5 pg
Lc =
(29x39.37) 6 x 1.125 6π x 1.125 x 24 /2
+ 9 = 39.3 pg
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Cable
CAB LE
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
Cable. El cable de perforación une al malacate con el ancla del cable y está guarnido a través de la corona y la polea viajera con objeto de darle movimientos verticales a esta . El cable esta formado por torones y un alma, varios torones se tuercen alrededor de un alma para formar el cable.
Corona
Línea viva Línea muerta
Toron Alma
Malacate
El alma o núcleo puede ser de fibra o acero
Ancla Polea viajera Carrete del cable
La trama de un cable describe la dirección en la que los alambres y los torones están envueltos uno del otro. Es el tipo de construcción del cable. El trabajo principal que desarrolla un cable es: v Durante la perforación. v Viajes para cambio de barrena. v Introducción de tuberías de revestimiento. v Operaciones diversas (pesca, núcleos, etc.)
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
La resistencia de un cable depende de: su construcción, la resistencia del material y de su diámetro. Dependiendo de su construcción los cables se clasifican en: El cable más utilizado en la industria petrolera tiene una clasificación 6 x 19 SEALE con centro de cable independiente. El número 6, se refiere al número de torones que rodean al alma de cada acero independiente; el número 19, indica que cada toron tiene 19 alambres. 6 x 19 SEALE El diseño SEALE nos indica el número de alambres internos y externos del toron.
El API clasifica los cables como se indica a continuación: De acero ranurado extra mejorado (EIPS) De acero ranurado mejorado (IPS) De acero ranurado (PS) De acero ranurado suave (MPS)
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
El diámetro correcto del cable es el del circulo circunscrito tangente a todos los torones exteriores como se muestra en la figura. Para medir el diámetro en la forma correcta se recomienda el uso de un calibrador en la forma indicada.
El cable es un elemento de transmisión entre el sistema de potencia y el trabajo de levantamiento del aparejo y durante su operación es sometido a: rozamiento, escoriado, vibrado, torcido, compresión y estirado; razón por la cual se debe aplicar un factor de seguridad en su diseño. El API proporciona los siguientes factores: Tipo de servicio § Sondeo § Levantar y bajar mástil § Introducir TR § Pescas
Factor de diseño 3 2.5 2 2
La resistencia a la ruptura de un cable extramejorado se puede obtener mediante la siguiente expresión:
Rc = D2 x 100,000 lb
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
La principal función de un cable de perforación conjuntamente con otros componentes (poleas) del sistema de izaje es la de dar una ventaja mecánica (Vm) para levantar o bajar la sarta de perforación. Si la tensión en la línea viva que esta unida al malacate se define como Tf, entonces la ventaja mecánica es:
Vm =
Wg
donde:
Wg es el peso en el gancho (lbs) Tf tensión en la línea viva (lbs)
donde:
N Eg
Tf Tf =
Wg N Eg
es el número de líneas en la polea viajera (gancho) es la eficiencia aplicada al gancho
Ej: Se usará un cable de 1 3/8 pg, 6 x 19 SEALE para correr una T.R. que pesa 500,000 lbs. Se desea saber si con un guarnido de 10 líneas el cable cumple con un factor de seguridad de 2. La resistencia del cable es de 192,000 lb y la eficiencia por polea de 0.98. Eg = (0.98)
Fs =
10
Rcable Tf
= 0.817
=
192,000 61 199
Tf =
= 3.137
Wg N Eg
=
500,000 (10) (0.817)
= 61,199 lbs
Si cumple con el factor de seguridad
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Cable
El factor de seguridad (FS) del cable también puede ser obtenido de la siguiente forma: Fs = (Rc x N x Eg) / Wg Donde:
Rc resistencia del cable (lbs)
Fs = (192000 x 10 x 0.817) / 500000 Fs = 3.137
Si el Fs hubiese resultado menor de 2, se tendría que cambiar el cable o aumentar el número de líneas en la polea viajera.
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
La potencia requerida (HP) al gancho para levantar una determinada carga, se calcula con: HPg caballos de potencia al gancho (HP)
Wg V HPg = 33000 HPm =
donde:
V
velocidad de izaje en (pies/min)
HPm caballos de potencia de salida en los motores (HP)
HPg 33000 Eg Em
donde:
Eg
eficiencia del gancho
Em
eficiencia del malacate
La unidad normal de potencia es el caballo de fuerza (HP) = 75 kg-m/seg Ej: Se usará una sarta de perforación para perforar un pozo que tendrá un peso de 300,000 lb, la velocidad de izamiento será de 93 pies/min. Se tienen 8 líneas guarnidas al gancho. El equipo tiene los siguientes componentes:
1 Flechas 4 Cadenas 3 7 Total
Motor 2 6 5 11
3 7 4 11
Suponga una eficiencia del 75% en los convertidores de torsión y del 98% para cada polea. Calcular los requerimientos mínimos de potencia en los motores.
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Cable
Solución: HPg = (300000) (93) / 33000 = 845 HP
Caballos requeridos en el gancho.
Eg = (0.98) 8 = 0.850
Eficiencia del sistema del gancho
HPm = HPg / 0.850 = 994 HP
Caballos requeridos en el malacate
E = [(0.98)7 (0.98)11 (0.98)11] / 3 = 0.823
Eficiencia entre los motores
HPm = 994 / 0.823 = 1,207 HP
Potencia en los motores
HHP = HPM / Ec = 1207 / 0.75 = 1,609 HHP
Requerimiento mínimo de potencia en los motores
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
Durante la vida operativa de un cable es necesario estar revisando su desgaste. La práctica más común es calcular el número de toneladas – kilómetro (TK) de trabajo realizado por el cable. Una tonelada - kilómetro se define como el trabajo realizado por el cable para levantar 1 Ton de peso a lo largo de 1 Km. Los principales factores que afectan el desgaste del cable son: los viajes redondos, la corrida de la T.R. y la perforación. Las tons – Km se obtienen con la siguiente ecuación: TK =
DWtp(Ll+D) 1 579 326
+
D Wg 588.65
+
Llb D W 789 665
donde:
TK = Toneladas – kilómetro del cable D
= Profundidad del pozo (m)
Wtp = Peso unitario (flotado) de la TP; (lb/pie) Ll
= Longitud de la lingada (m)
Wg = Peso del gancho (ton) Llb = Longitud de los lastrabarrenas (m) W
= Peso unitario flotado de los lastrabarrenas - peso unitario flotado de la TP (lb/pie)
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Cable
Ej: Calcular las toneladas – kilómetro en un viaje redondo para un pozo con las siguientes condiciones: Profundidad = 4000 m T.P. 4 ½”, 16.6 lb/pie Lastrabarrenas = 180 m y 107 lb/pie Longitud de la lingada = 29 m TK =
DWtp(Ll+D) 1 579 326
Wtp = Wtp (Ff)
+
D Wgc 588.65
Wlb = Wlb (Ff)
Ff =1 – (1.45 /7.85) = 0.815
+
Dens. del lodo (ρ) = 1.45 gr/cc Peso gancho = 8 ton
Llb D W 789 665
Donde: Ff = 1 – (ρl /ρa)
Wtp = 16.6 x 0.815 = 13.53 lb/pie
W = Wlb - Wtp
Wlb = 107 x 0.815 = 87.26 lb/pie
W = Wlb – Wtp = 87.26 – 13.53 = 73.73 lb/pie
TK =
4000(13.53)(4000+29) 1 579 326
+
4000(8) 588.65
+
180(4000)(73.73)
TK = 259.66 toneladas - kilómetro
789 665
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Cable
Tarea No. 2 Calcular las toneladas – kilómetro en un viaje redondo para un pozo con las siguientes condiciones: Profundidad = 14,760 pies T.P. 5”, S-135 = 29.05 kg/m Lastrabarrenas 8” x 3”= 165 m y 107 lb/pie Densidad del lodo: 1.80 gr/cc Longitud de la lingada = 28 m Peso del gancho = 26,400 lbs
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Sistema de poleas
SISTEMA DE POLEAS
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Sistema de poleas
El sistema de poleas es el que une mediante el cable de perforación al malacate con la tubería de perforación o revestimiento y proporciona un medio mecánico para bajar o levantar dichas tuberías. El sistema de poleas se compone de: la corona y la polea viajera. La corona es una serie de poleas fijas colocadas en la parte superior del mástil.
La polea viajera, como su nombre lo indica, es de libre movilidad. También se le conoce como: Block y Gancho.
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Sistema de poleas
El sistema de poleas nos permita reducir la fuerza requerida para sacar o meter la tubería. Una polea
Tres poleas en la corona y dos en la polea viajera
W = 136,200 kg levantar 0.3 m
W = 136,200 lb levantar 0.3 m
T = F x d = 136200 x 0.3 = 40,860 kg -m Si realiza el trabajo en un segundo:
Distancia recorrida en el malacate = No. de líneas x la distancia recorrida por la carga.
Potencia = Trabajo / tiempo
D = 4 x 0.3 = 1.2 m
Potencia = 40,860 kg -m
Fuerza del malacate = W / No. Líneas
Si 1 HHP = 75 kg –m
F = 136200 / 4 = 34,050 kg
HP requeridos = 544.8 HP La distancia que recorre el cable en el malacate es la misma que recorre la carga (0.3 m).
T = F x d = 34050 x 1.2 = 40,860 kg - m Potencia = Trabajo / tiempo Potencia = 40,860 kg -m Si 1 HHP = 75 kg –m HP requeridos = 544.8 HP
FACULTA DE INGENIERIA 2.
Elementos de Perforación
Sistema de izaje
Sistema de poleas
El equipo de perforación deberá evaluarse en su sistema de poleas para asegurar que cumpla con los requerimientos de seguridad. Las especificaciones para los factores de seguridad son: CARGA CALCULADA (TONS)
De 0.0 a 150
FACTOR DE SEGURIDAD
EFICIENCIA D LAS POLEAS VIAJERA
4
151 a 500
4 – (R-150) /350
501 ó más
3
Fg = (0.98) n n es el número de líneas ó poleas del gancho) Nota R es la carga calculada
Ej: Se desea correr una T R de 9 5/8”, 53.5 lb/pie a 4,300 m en un lodo de 1.82 gr/cm. Si el gancho tiene una capacidad para 350 ton. ¿Estará bien diseñado el sistema de la polea viajera?. Ff = 1 – (ρl /ρa) = 1 – (1.82/7.85) = 0.77 WTR = 4300 x 3.28 x 53.5 x 0.77 = 581,014 lbs = 264 ton Fs = 4 – (R-150) / 350 = 4 – (264-150) / 350 = 3.67 La capacidad requerida del equipo = Fs (WTR) = 3.67 x 264 = 968.9 tons De acuerdo a los requerimientos del API el equipo esta bajo diseñado No soporta
FACULTA DE INGENIERIA 2.
Sistema de izaje
Elementos de Perforación Sistema de poleas
Ej: Se requiere correr una T R de 13 3/8”, 77 lb/pie a 2,300 m en un lodo de 1.52 gr/cm. Si el gancho tiene una capacidad para 420 ton. ¿Estará bien diseñado el sistema de la polea viajera?.