3 FORMULARIO PARA VIGAS Y PÓRTICOS
3.1
Formulario para vigas y pórticos
3.1 Obtención de la Distribución de Solicitaciones mediante la Formulación de Macaulay Las Funciones de Macaulay permiten expresar tanto la distribución de cargas sobre una viga sometida a flexión como las leyes de Cortantes o Momentos Flectores generadas por dichas cargas. A continuación se muestra la expresión de tales funciones y las condiciones en las que deben aplicarse.
q( x) = ∑
A⋅ x − a
T ( x ) = −∑
A⋅ x − a
M( x ) = − ∑
( c− 2 )
( c − 2 )! ( c −1)
( c − 1) ! A⋅ x − a
c
c!
ecuaciones validas solo si n ≥ 0 en las expresiones si
y si
n=0
n>0
x−a
n
x≤a
x−a
0
=0
x≥a
x−a
0
=1
x≤a
x−a
n
=0
x≥a
x−a
n
= ( x − a)
n
En la siguientes tablas se particularizan estas funciones para cada caso de carga y se indica el valor que deberían tomar los parámetros A y c en la ecuación general previamente indicada.
3.2
Prontuario para Cálculo de Estructuras
M
Si x≤a
a
x≥a
x
x−a
0
=0
x−a
0
=1
entonces
M(x)
M( x ) = − M x − a
0
A=M c=0
por lo tanto
P Si
a
T(x)
x
1
x≤a
x−a = 0
x≥a
x − a = ( x − a) 1
1
entonces T ( x) = − P x − a
M(x)
0
M( x ) = − P x − a por lo tanto
1
A=P c =1
3.3
Limitación de las Deformaciones
Si x≤a
q
x≥a
x−a x−a
2
2
=0
= ( x − a)
2
a entonces
x
q( x) = q x − a
0
q 1 x−a 1 q M( x ) = − x−a 2 ⋅1
T(x)
T ( x) = − 2
M(x)
por lo tanto
q d
a x
T(x)
M(x)
2
A=q c=2
Si x≤a
x−a
x≥a
3
x−a
3
=0
= ( x − a)
entonces 2
3
qd 1 x−a 1 qd 2 T ( x) = − x−a 2 ⋅1 qd M( x ) = − x−a 3 ⋅ 2 ⋅1
q( x) =
por lo tanto
3
q d c=3 A=
3
3.4
Prontuario para Cálculo de Estructuras
Otros casos de carga que se resuelven por superposición de los anteriores
q
q −〈 x-a〉 2 + 〈 x-b〉 2 2! dM( x )
M(x) =
a
T ( x) =
b
dx
x q/d q a
d
T ( x) =
b
q/d q -〈 x-a〉 3 + 〈 x-b〉 3 + 〈 x-b〉 2 2! 3! dM( x )
M( x ) =
dx
x
q/d q a
q q/d 〈 x-a〉 3 − 〈 x-b〉 3 〈 x-a〉 2 + 2! 3! dM( x )
M(x) = − d
T ( x) =
b
dx
x
qb
qa
M(x) = − +
a
d b
T ( x) =
x
qa
qb
b x
T ( x) =
)
q b − q a /d 3!
qb 2!
〈 x-b〉 2 +
−〈 x-a〉 3 + 〈 x-b〉 3
dx
M(x) = −
d
2!
〈 x-a〉 2 +
dM( x )
+ a
(
qa
qa 2!
(q
a
〈 x-a〉 2 +
)
− q b /d 3!
dM( x ) dx
qb 2!
〈 x-b〉 2 +
〈 x-a〉 3 − 〈 x-b〉 3
VIGA APOYADA EN LOS EXTREMOS
3.2.1
REACCIONES P⋅b RA = L
RB =
B
C
P⋅a L
x
ESFUERZOS CORTANTES P⋅b P⋅a = cte ; QCB = − = cte QAC = L L MOMENTOS FLECTORES P⋅b P⋅a ⋅ x ; MCB = ⋅ ( L − x) MAC = L L ANGULOS DE GIRO P⋅a⋅b ⋅ ( L + b) ϕA = 6⋅E⋅I⋅L
P
A
CARGA PUNTUAL EN LA VIGA
a
b
Formulario para vigas y pórticos
3.2
L ;
Mmax = MC =
P⋅a⋅b ⋅ ( L + a) ; ϕB = − 6⋅E⋅I⋅L
P⋅a⋅b L
para
x0 = a
P⋅a⋅b ⋅ ( b − a) ; ϕC = 3⋅E⋅I⋅L
QB QA
ECUACION DE LA ELASTICA y
AC =
P ⋅ L ⋅ b ⋅ x b2 x 2 ⋅ 1− 2 − 2 6⋅E⋅I L L
;
y
CB =
2 P ⋅ L ⋅ a ⋅ ( L − x ) a2 L − x ⋅ 1− 2 − 6⋅E⋅I L L
FLECHA MAXIMA fC =
P⋅b 9⋅ E ⋅I ⋅ L 3
(
⋅ L2 − b2
)
3
2
para x =
L2 − b2 3
3.5
M max
3.6
3.2.2
CARGA CONTÍNUA EN PARTE DE LA VIGA
REACCIONES p⋅b⋅c RA = L
c RB =
P
p⋅a⋅c L
A
ESFUERZOS CORTANTES p⋅b⋅c p⋅b⋅c c − p⋅ − a + x ; QCD = QAC = 2 L L
;
QDB = −
C
p⋅a⋅c L
a
x0 = a −
para
; ϕB = −
c b⋅c + L 2
p⋅a⋅b⋅c c2 ⋅L + a− 6⋅E⋅I⋅L 4⋅b
QB QA
ECUACION DE LA ELASTICA p⋅b⋅c x 2 c2 y AC = ⋅ − x + a ⋅ L + b − 6 ⋅ L E ⋅ I 4 ⋅ a =
4 p c c2 ⋅ L ⋅ x − a − − 4 ⋅ b ⋅ c ⋅ x3 + 4 ⋅ a ⋅ b ⋅ c ⋅ L + b − ⋅ x 24 ⋅ E ⋅ I ⋅ L 2 4⋅a
=
p⋅a⋅c L − x c2 2 ⋅ ⋅ − ( L − x ) + b ⋅ L + a − 6⋅L 4 ⋅ a E ⋅ I
y
CD
y
DB
M max
Prontuario para Cálculo de Estructuras
ANGULOS DE GIRO p⋅a⋅b⋅c c2 ⋅L + b − ϕA = 6⋅E⋅I⋅L 4⋅a
b L
MDB = Mmax
D
x
MOMENTOS FLECTORES p⋅b⋅c p⋅b⋅c p c ⋅ x ; MCD = ⋅ x − ⋅ x − a − 2 MAC = 2 2 L L
p⋅ a⋅c ⋅ ( L − x) L p⋅b⋅c b⋅c = ⋅ 2⋅a− c+ L 2 ⋅ L
B
CARGA TRAPEZOIDAL EN TODA LA VIGA
REACCIONES 1 RA = ( 2 ⋅ p1 + p2 ) 6
;
RB =
1 ( p1 + 2 ⋅ p2 ) . 6
P1
ESFUERZOS CORTANTES p ( 3 ⋅ L − x ) + p2 ⋅ x 2 QA = RA ; Qx = RA − 1 ⋅x 6⋅L
;
P2
QB = −RB
B
A
MOMENTOS FLECTORES p ( 3L − x ) + p2 ⋅ x 2 Mx = RA ⋅ x − 1 ⋅x 6⋅L
x
L2 L2 ⋅ ( p1 + p2 ) y 0,128 ⋅ ⋅ ( p1 + p2 ) 2 2 1 1 para x 0 = ⋅ − p1 + ⋅ p12 + p22 + p1 ⋅ p2 3 p2 − p1
Formulario para vigas y pórticos
3.2.3
L
Mmax comprendido entre 0,125 ⋅
(
ANGULOS DE GIRO L3 ϕA = ⋅ ( 8 ⋅ p1 + 7 ⋅ p2 ) 360 ⋅ E ⋅ I
)
QA QB
; ϕB = −
3
L ⋅ ( 7 ⋅ p1 + 8 ⋅ p2 ) 360 ⋅ E ⋅ I
ECUACION DE LA ELASTICA
x ( L − x ) 3 ( p1 − p2 ) x − 3 ( 4 p1 + p2 ) Lx 360EI ( 8 p1 + 7p2 ) L2 x + ( 8 p1 + 7p2 ) L3 3
yx =
0,01304 ⋅
+
( p1 + p2 ) ⋅ L4 2⋅E⋅I
x0
M max
3.7
FLECHA MAXIMA ( p + p2 ) ⋅ L4 y entre 0,01302 ⋅ 1 2⋅E⋅I
2
3.8
3.2.4
MOMENTO FLECTOR
REACCIONES
R A = −R B = −
M L
C
ESFUERZOS CORTANTES M Qx = = cte L MOMENTOS FLECTORES M M MAC = − ⋅ x MCB = − ⋅ ( L − x ) L L M M izq der MC = − ⋅ a MC = − ⋅ b L L
A
a
QA
QB
FLECHA M⋅ a ⋅ b fC = ⋅ ( b − a) 3⋅E⋅I⋅L
MC M
MC
Prontuario para Cálculo de Estructuras
)
2 M ⋅ L ⋅ (L − x) a2 L − x ⋅ 1− 3 ⋅ 2 − 6⋅E⋅I L L
B
M = MCizq + MCder
ECUACION DE LA ELASTICA M⋅ L ⋅ x b2 x 2 y AC = − ⋅ 1− 3 ⋅ 2 − 2 6⋅E⋅I L L
yCB = −
b L
ANGULOS DE GIRO M ⋅ L b2 M ⋅ L a2 ϕA = ⋅ 3 ⋅ 2 − 1 ; ϕ B = ⋅3⋅ − 1 6⋅E⋅I L 6 ⋅ E ⋅ I L2 M 3 3 ϕC = ⋅ a +b 3 ⋅ E ⋅ I ⋅ L2
(
+M
3.3.1
P
CARGA PUNTUAL EN LA VIGA
REACCIONES P ⋅ b2 RA = 3 ⋅ ( L + 2 ⋅ a) L
Formulario para vigas y pórticos
3.3 VIGA EMPOTRADA EN LOS EXTREMOS
C ;
RB =
ESFUERZOS CORTANTES P ⋅ b2 QAC = 3 ⋅ ( L + 2 ⋅ a) = cte L
P ⋅ a2 ⋅ ( L + 2 ⋅ b) L3
;
QCB = −
B
A x a
P ⋅ a2 ⋅ ( L + 2 ⋅ b ) = cte L3
b L
MOMENTOS FLECTORES
P ⋅ a ⋅ b2 P ⋅ a2 ⋅ b P ⋅ b2 M = − M = ⋅ ( L ⋅ x + 2 ⋅ a ⋅ x − a ⋅ L) ; ; B AC L2 L2 L3 P ⋅ a2 2 ⋅ P ⋅ a2 ⋅ b2 = 3 ⋅ L ⋅ b + L2 − L ⋅ x − 2 ⋅ b ⋅ x ; MC = para x0 = a L L3
MA = − MBC
(
)
QB QA
ECUACION DE LA ELASTICA
y AC =
P ⋅ b2 2 ⋅ a ⋅ x x2 ⋅3 ⋅a − x − ⋅ 6⋅E⋅I L L2
y BC =
P ⋅ a2 L − x ⋅ (L − x) ⋅ 3 ⋅ b − (L − x) − 2 ⋅ b ⋅ 6⋅E⋅I L L2
FLECHAS P ⋅ a3 ⋅ b3 3 ⋅ E ⋅ I ⋅ L3 x=
fmax =
2 ⋅a⋅ L L + 2⋅a
MC
2 ⋅ P ⋅ a3 ⋅ b2 3 ⋅ E ⋅ I ⋅ ( L + 2 ⋅ a)
2
0
3.9
para
;
MB
MA
x
fC =
2
3.10
3.3.2
CARGA CONTÍNUA EN PARTE DE LA VIGA
c
P
REACCIONES p ⋅ b ⋅ c MA − MB RA = − L L
;
p ⋅ a ⋅ c MA − MB RB = + L L
C
c ; QBD = −RB = cte ; QCD = RA − p ⋅ x − a + a
x a
MOMENTOS FLECTORES MAC = RA ⋅ x + MA
;
MBD = RB ⋅ ( L − x ) + MB
MCD = RA ⋅ x + MA − ;
B
A
ESFUERZOS CORTANTES
QAC = RA = cte
D
MA = −
p ⋅ c3 12 ⋅ L2
p c ⋅x − a+ 2 2
b
2
12 ⋅ a ⋅ b2 ⋅L − 3⋅b + c2
Q
A
Q
B
ECUACION DE LA ELASTICA
x2 ⋅ ( −3 ⋅ MA − RA ⋅ x ) 6⋅E⋅I 4 1 c yCD = ⋅ p ⋅ x − a + − 4 ⋅ RA ⋅ x 3 − 12 ⋅ MA ⋅ x 3 24 ⋅ E ⋅ I 2 1 RB x 3 − 3 ( MB + LRB ) x 2 + 3 ( 2 MA + LRB ) Lx − ( 3 MB + LRB ) L2 y DB = 6EI y AC =
MA
MB
Prontuario para Cálculo de Estructuras
12 ⋅ a2 ⋅ b p ⋅ c3 ⋅ L − 3⋅a+ MB = − 2 12 ⋅ L c2
L
CARGA TRAPEZOIDAL EN TODA LA VIGA
REACCIONES L M − MB ⋅ ( 2 ⋅ p1 + p2 ) − A 6 L L MA − MB RB = ⋅ ( p1 + 2 ⋅ p2 ) + 6 L
P1
RA =
P2
ESFUERZOS CORTANTES
QA = RA Qx = RA −
p1 ⋅ ( 2 ⋅ L − x ) + p2 ⋅ x 2⋅L
B
A
Formulario para vigas y pórticos
3.3.3
x
⋅x
L
QB = −RB MOMENTOS FLECTORES L2 ( 3 ⋅ p1 + 2 ⋅ p2 ) 60 p ⋅ ( 3 ⋅ L − x ) + p2 ⋅ x 2 Mx = RA ⋅ x + MA − 1 ⋅x 6⋅L L2 MB = − ( 2 ⋅ p1 + 3 ⋅ p2 ) 60 MA = −
Q
A
Q
B
ECUACION DE LA ELASTICA
yx =
( p − p1) 3 x2 ⋅ 2 ⋅ x + p1 ⋅ L ⋅ x 2 − 4 ⋅ RA ⋅ L ⋅ x − 12 ⋅ MA ⋅ L 24 ⋅ E ⋅ I ⋅ L 5
MA
MB
3.11
3.12
3.3.4
MOMENTO FLECTOR
REACCIONES 6⋅M RA = − 3 ⋅ a ⋅ b L
;
RB =
6⋅M ⋅a⋅b L3
C A
ESFUERZOS CORTANTES
Qx = −
6⋅M ⋅ a ⋅ b = cte L3
a
M⋅ a b ⋅2 − 3⋅ L L
MAC =
B
x
MOMENTOS FLECTORES MA =
+M
MB = −
b L
M⋅ b a ⋅2 − 3⋅ L L
M⋅ a a x ⋅ 3 ⋅ ⋅ 1− 2 ⋅ − 1 L L L
MCB = −
M⋅ b b L−x ⋅ 3 ⋅ ⋅ 1− 2 ⋅ − 1 L L L 6⋅M 2 ⋅a ⋅b L3
;
MCder = MA +
M 3 ⋅ L − 6 ⋅ a2 ⋅ b L3
(
QB
)
ECUACION DE LA ELASTICA
y AC = y BC =
M ⋅ b ⋅ x2 2⋅E⋅I⋅L
L− x b ⋅2⋅a⋅ 2 − L L
M⋅ a ⋅ ( L − x ) 2⋅E⋅I⋅L
2
MC
b⋅ x a ⋅2 ⋅ 2 − L L
FLECHA M ⋅ a2 ⋅ b2 fC = − ⋅ ( a − b) 2 ⋅ E ⋅ I ⋅ L3
MA MC
MB
Prontuario para Cálculo de Estructuras
MCizq = MA −
QA
3.4.1
P
CARGA PUNTUAL EN LA VIGA
REACCIONES P ⋅ b2 P⋅a RA = ⋅ ( 3 ⋅ L − b ) ; RB = ⋅ 3 ⋅ L2 − a2 2 ⋅ L3 2 ⋅ L3 ESFUERZOS CORTANTES P ⋅ b2 P⋅a QAC = − ⋅ ( 3 ⋅ L − b ) = cte ; QCB = − ⋅ 3 ⋅ L2 − a2 = const. 2 ⋅ L3 2 ⋅ L3
(
)
(
C x a
b L
)
(
B
A
)
MOMENTOS FLECTORES P⋅a 2 P⋅a 2 ⋅ L − a2 ⋅ b ⋅ ( 3 ⋅ a + 2 ⋅ b) MB = − ; MC = 2 ⋅ L2 2 ⋅ L3 P⋅x 2 P⋅a ⋅ b ⋅ ( 3 ⋅ a + 2 ⋅ b ) ; MCB = ⋅ 2 ⋅ L3 − 3 ⋅ L2 ⋅ x + a2 ⋅ x MAC = 2 ⋅ L3 2 ⋅ L3
(
)
Q
B
ANGULOS DE GIRO
ϕA =
P ⋅ a ( L − a)
2
; ϕC =
4⋅E⋅I⋅L
P ⋅ a ⋅ ( L − a)
2
3
4⋅E⋅I⋅L
(
⋅ L2 − 2 ⋅ a ⋅ L − a2
)
Q
A
ECUACION DE LA ELASTICA P ⋅ b2 ⋅ x y AC = ⋅ 3 ⋅ a ⋅ L2 − x 2 ⋅ ( 2 ⋅ L + a) 12 ⋅ E ⋅ I ⋅ L3
y BC =
P ⋅ a ⋅ ( L − x) 12 ⋅ E ⋅ I
2
MB
a2 a2 L − x ⋅ 3 ⋅ 1− 2 − 3 − 2 ⋅ L L L
para x=L ⋅
a 2⋅L + a
MC
3.13
FLECHA MAXIMA p ⋅ b2 ⋅ a a fmax = ⋅ 6⋅E⋅I 2⋅L + a
Formulario para vigas y pórticos
3.4 VIGA APOYADA-EMPOTRADA
3.14
3.4.2
CARGA CONTÍNUA EN PARTE DE LA VIGA
REACCIONES p ⋅ b ⋅ c MB RA = + L L
;
c
P
p ⋅ a ⋅ c MB RB = − L L
C
ESFUERZOS CORTANTES
QAC = RA = cte
;
QDB = −RB = cte
;
QCD
c = RA − p ⋅ x − a + 2
x
MOMENTOS FLECTORES ;
MAC = RA ⋅ x
MCD
MDB = RB ⋅ ( L − x ) + MB
a
p c = RA ⋅ x − ⋅ x − a + 2 2 ;
MB = −
2
(L − x)
2
6⋅E⋅I
⋅ RB ⋅ ( L − x ) + 3 ⋅ MB
QB QA
MB
Prontuario para Cálculo de Estructuras
ECUACION DE LA ELASTICA x 12 ⋅ a ⋅ b2 y AC = ⋅ −8 ⋅ RA ⋅ L ⋅ x 2 + p ⋅ c3 ⋅ L − 3b + 48 ⋅ E ⋅ I ⋅ L c2 4 1 c 12ab2 ⋅ −8RALx 3 + 2 pL x − a + + pc3 L − 3b + yCD = x 48 ⋅ E ⋅ I ⋅ L 4 c2
b L
p⋅a⋅b⋅c c2 L a ⋅ + − 4⋅b 2 ⋅ L2
ANGULOS DE GIRO p ⋅ c3 12 ⋅ a ⋅ b2 ϕA = ⋅ L − 3b + 48 ⋅ E ⋅ I ⋅ L c2
y DB = −
B
A
CARGA TRAPEZOIDAL EN TODA LA VIGA
RA =
P2
P1
REACCIONES L M ⋅ ( 2 ⋅ p1 + p2 ) + B 6 L
;
RB =
L M ⋅ ( p1 + 2 ⋅ p2 ) − B 6 L
A ESFUERZOS CORTANTES
Qx = RA −
p1 ⋅ ( 2 ⋅ L − x ) + p2 ⋅ x 2⋅L
L ⋅x
;
QB = −RB
Q
A
MOMENTOS FLECTORES
Mx = RA ⋅ x −
p1 ⋅ ( 3 ⋅ L − x ) + p2 ⋅ x 6⋅L
B x
⋅ x2
Formulario para vigas y pórticos
3.4.3
;
MB = −
Q
B
L2 ⋅ ( 7 ⋅ p1 + 8 ⋅ p2 ) 120
ANGULOS DE GIRO
L3 ϕA = ⋅ ( 3 ⋅ p1 + 2 ⋅ p2 ) 240 ⋅ E ⋅ I
MB
ECUACION DE LA ELASTICA
yx =
3.15
x ( p2 − p1) x4 + 5Lp1x3 − 20RALx2 + 5L 12RAL2 − ( 3p1 + p2 ) L3 120EIL
3.16
3.4.4
MOMENTO FLECTOR
REACCIONES
RA = −RB =
3 M 2 ⋅ ⋅ L − a2 2 L3
(
)
ESFUERZOS CORTANTES
B
x
Qx = RA = cte
a
MOMENTOS FLECTORES MCder = RA ⋅ a − M ; MAC =
C +M
A
MCizq = RA ⋅ a
3 M⋅ x 2 ⋅ ⋅ L − a2 2 L3
(
)
;
MBC
M ⋅ L2 − 3 ⋅ a2 2 ⋅ L2 M x a2 = ⋅ 3 ⋅ ⋅ 1− 2 − 2 2 L L ;
(
MB =
b L
)
ANGULOS DE GIRO
b a 2 M ; ϕC = ⋅ b ⋅ 3 ⋅ ⋅ 1+ − 4 4⋅E⋅I L L
ECUACION DE LA ELASTICA M⋅ b ⋅ x ⋅ −4 ⋅ L3 − x 2 − 3 ⋅ L2 ⋅ ( a + L ) 4 ⋅ E ⋅ I ⋅ L3 M 2 = ⋅ ( L − x ) ⋅ 2 ⋅ a2 ⋅ L − x ⋅ L2 − a2 4 ⋅ E ⋅ I ⋅ L3
y AC = y BC
(
QA
QB
MC
)
(
MB
)
MC
Prontuario para Cálculo de Estructuras
M ϕA = ⋅ ( L − a) ⋅ ( 3 ⋅ a − L ) 4⋅E⋅I⋅L
3.5.1
CARGA PUNTUAL EN LA VIGA
C
Formulario para vigas y pórticos
3.5 VIGA EMPOTRADA EN UN EXTREMO
P
REACCIONES
B
A
RB = P
x ESFUERZOS CORTANTES QAC = 0 ; QCB = −P = cte
a L
MOMENTOS FLECTORES
MAC = 0
;
b
MCB = −P ⋅ ( x − a)
;
MB = −P ⋅ b
ANGULOS DE GIRO
ϕ A = ϕC = −
P ⋅ b2 2⋅E⋅I
QB
ECUACION DE LA ELASTICA
y
AC
=
P ⋅ b2 ⋅ ( 3 ⋅ ( L − x ) − b) 6⋅E⋅I
;
y
CB
=
MB
3.17
FLECHA MAXIMA P ⋅ b3 P ⋅ b2 ⋅ ( 2 ⋅ b + 3 ⋅ a) fC = ; fA = 3⋅E⋅I 6⋅E⋅I
P 2 ⋅ ( L − x ) ⋅ ( 2 ⋅ b + 3 ⋅ a) 6⋅E⋅I
3.18
3.5.2
CARGA CONTÍNUA EN PARTE DE LA VIGA
REACCIONES . RB = p ⋅ c
c
ESFUERZOS CORTANTES . c QAC = 0 ; QCD = − p ⋅ x − a + 2
P ; QDB = − p ⋅ c = cte
; ϕC = −
x p ⋅ c2 MD = − 2
p ⋅ c 2 c2 ⋅b + 2⋅E⋅I 12
a
b L
; ϕ A = ϕC
y DB =
p⋅c p⋅c c2 3 ⋅ L − x 2 ⋅ ( 2 ⋅ b − a + x ) ; y AC = ⋅ ( a − x ) ⋅ 3 ⋅ b2 + + 2⋅b 6⋅E⋅I 6 ⋅ E ⋅ I 4
y DC =
4 p c c2 3 ⋅ x − a + + 4 ⋅ c ⋅ ( a − x ) ⋅ 3 ⋅ b2 + + 8 ⋅ b ⋅ c 24 ⋅ E ⋅ I 2 4
)
Q
B
FLECHAS . 2
fD =
p⋅ c c ⋅ b− 2 E ⋅ I
b c ⋅ + 3 12
2 p ⋅ c c p⋅ c c2 fC = ⋅ b + ⋅ ( 4 ⋅ b − c) + c3 ; fA = ⋅ a ⋅ 3 ⋅ b2 + + 2 ⋅ b3 12 ⋅ E ⋅ I 2 6 4 E I ⋅ ⋅
M
B
Prontuario para Cálculo de Estructuras
ECUACION DE LA ELASTICA .
(
D
C
B
MOMENTOS FLECTORES . 2 c p⋅ x − a+ 2 MAC = 0 ; MCD = − ; 2 MDB = − p ⋅ c ⋅ ( x − a) ; MB = − p ⋅ c ⋅ b ANGULOS DE GIRO . p ⋅ c 2 c2 ⋅b − ϕD = − 2⋅E⋅I 4
A
CARGA TRAPEZOIDAL EN TODA LA VIGA
REACCIONES 1 RB = ( p1 + p2 ) 2 ESFUERZOS CORTANTES
p − p1 x 2 ⋅ − p1 ⋅ x Qx = − 2 L 2
A ;
L QB = − ( p1 + p2 ) 2
x2 ⋅ ( p2 − p1) ⋅ x + 3 ⋅ L ⋅ p1 6⋅L
B x
MOMENTOS FLECTORES
Mx = −
P2
P1
Formulario para vigas y pórticos
3.5.3
;
MB = −
L2 ⋅ ( p2 + 2 ⋅ p1 ) 6
L
ANGULOS DE GIRO
ϕA = −
L3 ⋅ ( 3 ⋅ p1 + p2 ) 24 ⋅ E ⋅ I
ECUACION DE LA ELASTICA 3 2 ( L − x) 2 L − x ) − ( p2 − p1 ) + ( L − x ) p2 − ( yx = 5L 24EI 2 L L x p p L p p 2 2 2 − − + + + ( )( ) ( ) 2 1 2 1
FLECHA
120 ⋅ E ⋅ I
MB
3.19
fA =
L4 ⋅ ( 4 ⋅ p2 + 11⋅ p1 )
QB
3.20
3.5.4
MOMENTO FLECTOR
REACCIONES
M
A
B
RB = 0 ESFUERZO CORTANTE
x a
Qx = 0
L
MOMENTOS FLECTORES
MAC = 0
;
MCB = − M = cte
b
;
MAC = − M
ANGULOS DE GIRO
ϕC = ϕ A = −
ECUACION DE LA ELASTICA y AC =
M ⋅ b ⋅ ( 2 ⋅ L − 2 ⋅ x − b) 2⋅E⋅I
;
y BC =
M 2 (L − x) 2⋅E⋅I
FLECHA
fC =
M ⋅ b2 2⋅E⋅I
;
fA =
M ⋅ b ⋅ ( 2 ⋅ L − b) 2⋅E⋅I
MB
Prontuario para Cálculo de Estructuras
M⋅ b E⋅I
P
P
A
P
B
L/2
C
L/2 L
A
L
A
L/2 L
0,688 P
0,312 P
L
0,405 P
B
C
0,094 P
0,094 P
B
A
0,312 P
0,688 P
C
B
L/2
L/2
L/2
Formulario para vigas y pórticos
3.6 VIGAS CONTINUAS DE DOS VANOS IGUALES
C
0,594 P
ESFUERZOS CORTANTES
ESFUERZOS CORTANTES
- 0,188 PL - 0,094 PL A
B
0,156 PL
C
0,156 PL
B
C
0,203 PL MOMENTOS FLECTORES
3.21
MOMENTOS FLECTORES
A
3.22
Q
Q
A
L
B
Q
C
L
0,625 QL
A
0,375 L
B
L
L
C
0,437 QL
0,375 QL
0,063 QL B
A
C
A
0,375 QL
0,375 L
B
0,563 QL
0,437 L
0,625 QL
ESFUERZOS CORTANTES
2
2
- 0,063 QL
- 0,125 QL
B 2
C 2
0,07 QL
0,07 QL MOMENTOS FLECTORES
A
B 2
0,096 QL
MOMENTOS FLECTORES
C
Prontuario para Cálculo de Estructuras
ESFUERZOS CORTANTES
A
C
Q
A
L
Q
B
C
k L
c QL d L
a QL
A
C
B
b QL
d QL
a L ESFUERZOS CORTANTES
2
f QL
A
B
2
g QL
k
a
b
c
d
e
f
g
1,1
0,361
0,639
0,676
0,424
0,065
0,139
0,09
1,2
0,345
0,655
0,729
0,471
0,060
0,155
0,111
1,3
0,326
0,674
0,784
0,516
0,053
0,174
0,133
1,4
0,305
0,695
0,840
0,560
0,047
0,195
0,157
1,5
0,281
0,719
0,896
0,604
0,040
0,219
0,183
1,6
0,255
0,745
0,953
0,647
0,033
0,245
0,209
1,7
0,226
0,774
1,011
0,689
0,026
0,274
0,237
1,8
0,195
0,805
1,070
0,730
0,019
0,305
0,267
1,9
0,161
0,839
1,128
0,772
0,013
0,339
0,298
2,0
0,125
0,875
1,128
0,812
0,008
0,375
0,330
2,1
0,086
0,914
1,247
0,853
0,004
0,414
0,364
2,2
0,045
0,954
1,308
0,892
0,001
0,455
0,399
2,3
0,001
0,999
1,367
0,933
0,000
0,499
0,435
k 2 − k +1 8 k f d= − 2 k f=
a = 0.5 − f e=
a2 2
b = 0.5 + f g=
d2 2
c=
k f + 2 k
3.23
MOMENTOS FLECTORES
MOMENTOS FLECTORES
ESFUERZOS CORTANTES
C
2
e QL
Relación entre luces
Formulario para vigas y pórticos
3.7 VIGAS CONTINUAS DE DOS VANOS DESIGUALES
3.24
Q
Q
A
B
L
Relación entre luces
C
k L
c QL d L A C
B
a QL d QL
b QL
k
a
b
c
d
f
g
2,4
-0,045
1,045
1,427
0,973
0,545
0,473
2,5
-0,094
1,094
1,487
1,013
0,594
0,513
2,6
-0,145
1,145
1,548
1,051
0,645
0,553
2,7
-0,198
1,198
1,608
1,091
0,698
0,595
2,8
-0,255
1,255
1,669
1,130
0,755
0,638
2,9
-0,313
1,313
1,730
1,169
0,813
0,683
3,0
-0,375
1,375
1,791
1,208
0,875
0,730
2
f QL
k 2 − k +1 8 k f d= − 2 k f=
A
B
MOMENTOS FLECTORES
C
2
g QL
a = 0.5 − f e=
a2 2
b = 0.5 + f g=
d2 2
Prontuario para Cálculo de Estructuras
ESFUERZOS CORTANTES
MOMENTOS FLECTORES
ESFUERZOS CORTANTES
Q
Q
A
Q
B
C
L
D
k L
a QL
L
a L
b QL
c QL
D
B
Relación entre luces
ESFUERZOS CORTANTES
MOMENTOS FLECTORES
k
a
b
c
e
f
g
0,6
0,420
0,580
0,300
0,088
0,080
-0,035
0,7
0,418
0,582
0,350
0,087
0,081
-0,020
0,8
0,414
0,586
0,400
0,086
0,086
-0,006
0,9
0,408
0,592
0,450
0,083
0,091
-0,009
Formulario para vigas y pórticos
3.8 VIGAS CONTINUAS DE TRES VANOS CON SIMETRIA DE LUCES
C
A
c QL
b QL
a L
a QL
ESFUERZOS CORTANTES
2
f QL
2
2
f QL
f=
k3 + 1 12 ⋅ k + 8
a = 0.5 − f
c=
k 2
e=
a2 2
b = 0.5 + f
g=
k2 −f 8
g QL A
B
C
D 2
2
e QL
e QL
3.25
MOMENTOS FLECTORES
3.26
Q
Q
A
Q
B
C
L
D
k L
L
a L
a QL
b QL
c QL
D C
B
A
c QL
b QL
a QL
a L
2
f QL
B 2
e QL
MOMENTOS FLECTORES
k
a
b
c
e
f
g
1,0
0,400
0,600
0,500
0,080
0,100
0,025
1,1
0,390
0,610
0,550
0,076
0,110
0,041
1,2
0,378
0,622
0,600
0,072
0,122
0,058
1,3
0,365
0,635
0,650
0,066
0,135
0,076
1,4
0,349
0,651
0,700
0,061
0,151
0,094
1,5
0,322
0,668
0,750
0,055
0,168
0,113
1,6
0,313
0,687
0,800
0,049
0,187
0,133
1,7
0,292
0,708
0,850
0,043
0,208
0,153
1,8
0,269
0,731
0,900
0,036
0,231
0,174
1,9
0,245
0,755
0,950
0,030
0,255
0,196
2,0
0,219
0,781
1,000
0,024
0,281
0,219
2
f QL A
ESFUERZOS CORTANTES
C 2
g QL
MOMENTOS FLECTORES
f=
k3 + 1 12 ⋅ k + 8
a = 0.5 − f
c=
k 2
e=
b = 0.5 + f
D 2
e QL
a2 2
g=
k2 −f 8
Prontuario para Cálculo de Estructuras
ESFUERZOS CORTANTES
Relación entre luces
k=
I2 h ⋅ I1 l
3.9.1
y
N = 3 + 2k a
s
p
CARGA REPARTIDA VERTICAL
B
C I
2
x
REACCIONES
m
VA VD
psn = l psm = l
HA = HD =
Formulario para vigas y pórticos
3.9 PORTICOS SIMPLES BIARTICULADOS A LA MISMA ALTURA. DINTEL HORIZONTAL
I
n I
1
A
h
1
D
s 3 ps mn − 2hlN 12 2
l
MOMENTOS FLECTORES
MB
MC
3 ps s2 MB = MC = − ⋅ mn − 2 lN 12 En S Mx = VA ⋅ x −
p(x − m)2 − HA ⋅ h 2
HA
HD VD
3.27
VA
3.28
3.9.2
CARGA REPARTIDA HORIZONTAL
REACCIONES
VA = VD = HD = HA =
p
B
C I
ph2 2l
ph ( 2N + k )
I
2
I
1
8N
h
1
y
ph ( 6N − k )
A
8N
D l
MOMENTOS FLECTORES MB
MY =
py(h − y) y + ⋅ MB h 2
MC
MB
HA
HD VA
VD
Prontuario para Cálculo de Estructuras
ph2 ( 2N − k ) 8N ph2 MC = − ( 2N + k ) 8N En AB MB =
Formulario para vigas y pórticos
3.9.3
CARGA PUNTUAL VERTICAL SOBRE DINTEL
REACCIONES
n
B
Pn VA = l Pm VD = l HA = HD =
P
m
C I
I
2
I
1
h
1
3 Pmn 2 lhN A
D
MOMENTOS FLECTORES
l
3 Pmn MB = MC = − ⋅ 2 lN 2N − 3 MP = Pmn 2lN
MB
MC
MP
HD
HA VD
3.29
VA
3.30
3.10 PÓRTICOS SIMPLES BIARTICULADOS A LA MISMA ALTURA. DINTEL INCLINADO k1 =
I3 h1 ⋅ I1 s
y
k2 =
I3 h 2 ⋅ I2 s
p
3.10.1 CARGA REPARTIDA VERTICAL
C s
REACCIONES
f I
B
pl 2 h1 + h2 pl 2 HA = HD = 8 h12 (1+ k1 ) + h22 (1+ k2 ) + h1h2
VA = VD =
3
I
x I
h1
h2
2
1
A
D l
MB = −
( h1 + h2 ) h1 pl2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
MC = −
( h1 + h2 ) h2 pl 2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
En
BC
MX =
px(l − x) f − HA x + h1 2 l
MC
MB
HA
HD VA
VD
Prontuario para Cálculo de Estructuras
MOMENTOS FLECTORES
Formulario para vigas y pórticos
3.10.2 CARGA REPARTIDA HORIZONTAL SOBRE PILAR
C
REACCIONES
ph12 VA = VD = 2l HA = ph1 − HD
s
f
p
I
3
B I
h1
h1 ( 4 + 5k 1 ) + 2h2 ph12 HD = 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
I 1
h2
2
y
A
D l
MOMENTOS FLECTORES MC
h1 ( 4 + 5k 1 ) + 2h2 ph12 ph3 − 1 2 MB = 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2 MC =
MB
h1 ( 4 + 5k 1 ) + 2h2 ph12 h2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
En AB MY = HA y −
py 2 2
HD
HA VD
3.31
VA
3.32
3.10.3 CARGA REPARTIDA HORIZONTAL SOBRE DINTEL
p
REACCIONES
VA = VD =
pf ( h1 + h2 )
f I
2l
B
HA = pf − HD
HD =
pf 8h (1+ k 1 ) + 4h1h2 + f ( h1 + h2 ) 8 h (1+ k1 ) + h22 (1+ k2 ) + h1h2 2 1 2 1
C s
I
h1
y
3
I
h2
2
1
A
D l
MOMENTOS FLECTORES
MC = −
2 pfh1 8h1 (1+ k 1 ) + 4h1h2 + f ( h1 + h2 ) 8 h12 (1+ k1 ) + h22 (1+ k2 ) + h1h2
MC
MB
ph2 8h (1+ k 1 ) + 4h1h2 + f ( h1 + h2 ) 8 h (1+ k1 ) + h22 (1+ k2 ) + h1h2 2 1 2 1
En BC l py 2 MY = −VA y + HA ( y + h1 ) − f 2
HA
HD VA
VD
Prontuario para Cálculo de Estructuras
MB = pfh1 −
C
REACCIONES
Pb VA = l Pa VD = l h1(l + b) + h2 (l + a) Pab HA = HD = 2 2 2l h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
s
f I
3
B I
h1
I a
b
h2
2
Formulario para vigas y pórticos
3.10.4 CARGA PUNTUAL VERTICAL SOBRE DINTEL
1
A
D l
MOMENTOS FLECTORES
MB = −
h1 ( l + b ) + h2 ( l + a ) Pabh1 2 2 2l h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
MC
MB
h1 ( l + b ) + h2 ( l + a ) Pabh2 MC = − 2 2 2l h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2 MP =
Pab af + HA + h1 l l
MP
HD
HA VA
VD
3.33
3.34
3.11 PÓRTICOS SIMPLES BIARTICULADOS A LA MISMA ALTURA. DINTEL A DOS AGUAS k=
I2 h ⋅ I1 s
p
3.11.1 CARGA REPARTIDA VERTICAL SOBRE DINTEL
C s
REACCIONES
I
pl 2 8h + 5f pl 2 HA = HE = 2 32 h ( 3 + k ) + f ( 3h + f )
B
VA = VE =
D
I
I
1
A
h
1
E l
pl 2 h 8h + 5f 2 32 h ( 3 + k ) + f ( 3h + f )
MC
2
pl f+h MB + 8 h
MB
MD
En BC y DC MX = p
x (l − x) 2
+
MB 2fx h+ h l
HE
HA VA
VE
Prontuario para Cálculo de Estructuras
MC =
f 2
x
MOMENTOS FLECTORES
MB = MD = −
I
2
p
REACCIONES
C
pl VA = 3 8 pl VE = 8 HA = HE =
s
I B
I
2
I
I
1
A l
pl 2 h 8h + 5f 2 64 h ( 3 + k ) + f ( 3h + f )
MC
pl 2 f + h + MC = MB 16 h En BC x (l − x) 2
+
MB h
h
1
E
MOMENTOS FLECTORES
MX = p
D
x
8h + 5f pl 2 2 64 h ( 3 + k ) + f ( 3h + f )
MB = MD = −
f 2
Formulario para vigas y pórticos
3.11.2 CARGA REPARTIDA VERTICAL SOBRE MEDIO DINTEL
MB
MD
2fx h+ l HE VA
VE
3.35
HA
3.36
3.11.3 CARGA REPARTIDA HORIZONTAL SOBRE PILAR REACCIONES C
ph2 VA = VE = 2l HA = ph − HE HE =
s
I
p
I
2
f 2
D
B
( 5k + 12 ) h + 6f ph 2 16 h ( k + 3 ) + f ( f + 3h) 2
I
1
I y
A
h
1
E
MOMENTOS FLECTORES l
ph2 + MD MB = 2 ph2 f + h + MC = MD h 4 ( 5k + 12 ) h + 6f ph3 MD = − 2 16 h ( k + 3 ) + f ( f + 3h)
MC
MD
En AB My = −
py 2 + HA ⋅ y 2
HA
HE VA
VE
Prontuario para Cálculo de Estructuras
MB
REACCIONES
p
pf VA = VE = ( f + 2 h) 2l HA = pf − HE
s
I
I
2
f 2
D
B
pf 8h ( k + 3 ) + 5f ( f + 4h) 16 h2 ( k + 3 ) + f ( f + 3h) 2
HE =
C
Formulario para vigas y pórticos
3.11.4 CARGA REPARTIDA HORIZONTAL SOBRE DINTEL
y I
I
1
A
MOMENTOS FLECTORES
x
h
1
E l
MB = HA ⋅ h MC = −
2 pf 2 4h ( k + 2 ) + f ( 5h + f ) ⋅ 2 16 h ( k + 3 ) + f ( f + 3h)
MC
MD = −HE ⋅ h MB
MD
En BC Mx = HA ⋅ y − VA ⋅ x − p
2
2
HE
HA VA
VE
3.37
f siendo y = x + h l
( y − h)
3.38
3.11.5 CARGA PUNTUAL VERTICAL SOBRE DINTEL p REACCIONES
Pn l Pm VA = l
C s
VA =
I B
(
)
I
2 2 Pm 6hln+ f 3l − 4m HA = HE = 2 2 4 l h ( k + 3 ) + f ( f + 3 h)
I
2
m
n
1
A
f 2
D I
h
1
E l
MOMENTOS FLECTORES
MB = MD = −HA ⋅ h
MC
MB
MD
HE
HA VA
VE
Prontuario para Cálculo de Estructuras
Pm h + f + MC = MB h 2 hl + 2fm MP = VA ⋅ m − HA l
k1 =
I3 h1 ⋅ I1 l
y
k2 =
I3 h 2 ⋅ I2 l
3.12.1 CARGA REPARTIDA VERTICAL SOBRE DINTEL p B
C
REACCIONES
VA =
I
3
x 2 1
h −h pl pl + 2 8 h12 (1+ k1 ) + h22 (1+ k2 ) + h1h2 2 1
I
2 2
h1
I
1
h2
2
Formulario para vigas y pórticos
3.12 PÓRTICOS SIMPLES BIARTICULADOS A DISTINTA ALTURA. DINTEL HORIZONTAL
D
2 2
h −h pl pl VD = − 2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
A
h1 − h2 pl 2 HA = HD = 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
l
MOMENTOS FLECTORES MB
( h1 + h2 ) h1 pl 2 MB = − 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2 MC = −
MC
( h1 + h2 ) h2 pl 2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
HD
En BC
VD HA VA
3.39
px 2 Mx = VA ⋅ x − − HA ⋅ h1 2
3.40
3.12.2 CARGA REPARTIDA HORIZONTAL SOBRE PILAR REACCIONES
p
B
C
2 1
ph h − h2 VA = VD = − HD 1 2l l HA = ph − HD HD =
ph12 5k1h1 + 4h1 + 2h2 8 h12 (1+ k1 ) + h22 (1+ k2 ) + h1h2
I
3
I h1
I
1
h2
2
D y
A
MOMENTOS FLECTORES l
ph2 ph3 5k1h1 + 4h1 + 2h2 MB = − 1 − 1 2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2 MB
ph12 h2 5k1h1 + 4h1 + 2h2 2 8 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
MC
MB
En AB My = HA ⋅ y −
py 2 2
HD VD HA VA
Prontuario para Cálculo de Estructuras
MC = −
P
a
REACCIONES
( l + b ) h1 + ( l + a) h2 Pb Pab VA = h1 − h2 + 3 2 l 2l h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
(
( l + b ) h1 + ( l + a) h2 Pa Pab VD = h1 − h2 − 3 2 l 2l h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
(
b
B
C I
) )
3
I h1
I
1
h2
2
Formulario para vigas y pórticos
3.12.3 CARGA PUNTUAL VERTICAL SOBRE DINTEL
D
A
HA = HD =
( l + b ) h1 + ( l + a) h2 Pab 2 2 2l h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2
l
MOMENTOS FLECTORES
MB = −
MC = −
MB
( l + b) h1 + ( l + a) h2 Pabh1 2 2 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2 2l
MC
MP HD
( l + b ) h1 + ( l + a) h2 Pabh2 2 2 h1 (1+ k1 ) + h22 (1+ k2 ) + h1h2 2l
VD HA VA
3.41
MP = VA ⋅ a + MB
3.42
3.13 PÓRTICOS SIMPLES BIEMPOTRADOS A LA MISMA ALTURA. DINTEL HORIZONTAL k=
I2 h ⋅ I1 l
3.13.1 CARGA REPARTIDA VERTICAL SOBRE DINTEL
p B
C I
VA = VD =
pl 2
HA = HD =
pl 2 4h ( k + 2 )
I
I
1
h
1
A
MOMENTOS FLECTORES
D l
pl2 6 ( k + 2)
MB
MC
En BC Mx =
px ( l − x ) 2
Mmáx pos =
−
pl 2 6( k + 2)
pl 2 3k + 2 l para x = 24 k + 2 2
HA
MA
VA
MD
HD VD
Prontuario para Cálculo de Estructuras
pl2 MA = MD = 12 ( k + 2 ) MB = MC = −
2
x
REACCIONES
p
REACCIONES
B
C
2
ph k VA = VD = l ( 6k + 1)
I
HA = ph − HD HD =
I
ph ( 2k + 3 )
A
ph2 MC = − 24 MD =
ph2 24
l
2 2 3 − 6k + 1 − k + 2
MC
MB MB
2 1 3 + 6k + 1 − k + 2
En AB My = −
D
2 1 5 + 6k + 1 + k + 2
ph2 2 2 1− + 24 6k + 1 k + 2
h
1
y
MOMENTOS FLECTORES
MB =
I
1
8 ( k + 2)
ph2 MA = − 24
2
Formulario para vigas y pórticos
3.13.2 CARGA REPARTIDA HORIZONTAL SOBRE PILAR
py 2 + HA ⋅ y + MA 2
MA
HA VA
MD
HD VD
3.43
3.44
3.13.3 CARGA PUNTUAL VERTICAL SOBRE DINTEL REACCIONES
VA =
P
m
Pn m ( n − m) 1+ 2 l l ( 6k + 1)
n
B
C I
2
VD = P − VA HA = HD =
3Pmn 2lh(k + 2)
I
MOMENTOS FLECTORES
MA =
I
1
A
D
Pmn 1 n− m − 2l k + 2 l ( 6k + 1) Pmn 1 n− m + l k + 2 2l ( 6k + 1)
MC = −
Pmn 1 n− m − l k + 2 2l ( 6k + 1)
MD =
Pmn 1 n− m + 2l k + 2 l ( 6k + 1)
MP =
Pmn nMB mMC + + l l l
l
MB
MC
MP
HA
MA
VA
MD
HD VD
Prontuario para Cálculo de Estructuras
MB = −
h
1
Formulario para vigas y pórticos
3.13.4 CARGA PUNTUAL HORIZONTAL EN CABEZA DE PILAR REACCIONES
3Phk VA = VD = l(6k + 1) P HA = HD = 2 MOMENTOS FLECTORES
Ph 3k + 1 2 6k + 1 Ph 3k MB = − MC = 2 6k + 1 Ph 3k + 1 MD = 2 6k + 1
P
B
C I
I
2
I
1
h
1
A
D
MA = −
l
MB
MA
MC
HA
HD VD
3.45
VA
MD
3.46
3.14 PÓRTICOS SIMPLES BIEMPOTRADOS A LA MISMA ALTURA. DINTEL A DOS AGUAS k=
I2 h ⋅ I1 s
p
3.14.1 CARGA REPARTIDA VERTICAL SOBRE DINTEL
C s
REACCIONES
I
pl 2 k ( 4h + 5f ) + f pl 2 HA = HE = 8 ( kh + f )2 + 4k h2 + hf + f 2
B
VA = VE =
(
f 2
D
x I
)
I
1
h
1
A
E l
MOMENTOS FLECTORES
pl2 kh ( 8h + 15f ) + f ( 6h − f ) 48 ( kh + f )2 + 4k h2 + hf + f 2
(
kh (16h + 15f ) + f 2 pl2 MB = MD = − 48 ( kh + f )2 + 4k h2 + hf + f 2
(
pl 2 + MA − HA ( h + f ) 8 En BC
MC
) MB
)
MD
MC =
2 xf px Mx = MA + VA ⋅ x − HA h + − 2 l
2
HA
MA
VA
ME
HE VE
Prontuario para Cálculo de Estructuras
MA = ME =
I
2
p
REACCIONES
pl − VE 2 4k + 1 VE = 3 pl 32 ( 3k + 1) k ( 4h + 5f ) + f pl 2 HA = HE = 16 ( kh + f )2 + 4k h2 + hf + f 2
C
VA =
(
s
I B
)
I
l
MD = −
kh (16h + 15f ) + f 2 pl 2 pl2 + 96 ( kh + f )2 + 4k f 2 + fh + h2 64 ( 3k + 1)
En BC
MC
)
kh (16h + 15f ) + f 2 pl 2 pl 2 − 96 ( kh + f )2 + 4k f 2 + fh + h2 64 ( 3k + 1)
(
(
MB
)
)
HA
MD
MA
VA
ME
HE VE
3.47
2 xf px 2 Mx = MA + VA ⋅ x − HA h + − l 2 l MC = VE + ME − HE ( f + h) 2
h
1
E
pl 2 kh ( 8h + 15f ) + f ( 6h − f ) pl 2 + 96 ( kh + f )2 + 4k f 2 + fh + h2 64 ( 3k + 1)
MB = −
I
1
)
(
D
A
pl 2 kh ( 8h + 15f ) + f ( 6h − f ) pl 2 MA = − 2 96 ( kh + f ) + 4k f 2 + fh + h2 64 ( 3k + 1) ME =
f 2
x
MOMENTOS FLECTORES
(
I
2
Formulario para vigas y pórticos
3.14.2 CARGA REPARTIDA VERTICAL SOBRE MEDIO DINTEL
3.48
3.14.3 CARGA REPARTIDA HORIZONTAL SOBRE PILAR REACCIONES
VA = VE =
ph2 k 2l ( 3k + 1)
C s
HA = ph − HE HE =
k 2 h + k ( 2 f + 3 h) + f ph2 4 ( kh + f )2 + 4k f 2 + fh + h2
(
)
I
f 2
D
1
I y
E
2 2 ph2 kh ( k + 6 ) + kf (15h + 16f ) + 6f 2k + 1 + 6 24 ( kh + f )2 + 4k f 2 + fh + h2 3k + 1
(
l
)
MC
(
MD
)
MA
HA VA
ME
HE VE
Prontuario para Cálculo de Estructuras
MB
2 2 ph2 kh ( k + 6 ) + kf (15h + 16f ) + 6f 2k + 1 − + 6 2 24 3k + 1 ( kh + f ) + 4k f 2 + fh + h2 En AB py 2 My = MA + HA ⋅ y − 2
h
1
A
ph2 MB = MA + HA ⋅ h − 2 1 MC = ME − HE ( f + h) + VE 2 MD = ME − HE ⋅ h ME =
I
2
B
MOMENTOS FLECTORES
MA = −
I
p
REACCIONES
p
3 pf 4k ( f + h) + f 8 l 3k + 1 HA = pf − HE
C
VA = VE =
HE =
s
I
2 pf 2k h ( k + 4 ) + f (10kh + 5kf + f ) 4 ( kh + f )2 + 4k f 2 + fh + h2
(
)
I
MC = ME − HE ( h + f ) + VE MD = ME − HE ⋅ h
y
I
(
E
(
l
)
l 2
h
1
A
MC
MB
kh ( 9f + 4h) + f ( 6h + f ) 3 4h ( 3k + 2 ) + f pf −f + 24 ( kh + f )2 + 4k f 2 + fh + h2 2 3k + 1 En BC 2 l ( y − h) p ( y − h) − My = MA + HA ⋅ y − VA 2f 2 ME =
D
1
kh ( 9f + 4h) + f ( 6h + f ) pf 3 4h ( 3k + 2 ) + f + f 24 ( kh + f )2 + 4k f 2 + fh + h2 2 3k + 1
MB = MA + HA ⋅ h
f 2
B
MOMENTOS FLECTORES
MA = −
I
2
Formulario para vigas y pórticos
3.14.4 CARGA REPARTIDA HORIZONTAL SOBRE DINTEL
MD
)
MA
HA
HE VE
3.49
VA
ME
3.50
3.14.5 CARGA PUNTUAL VERTICAL SOBRE DINTEL REACCIONES
p
VA = P − VE 2 Pm 3l ( kl + m) − 2m VE = 3 3k + 1 l 2 2 Pm 3kl ( f + h) − 4fm ( k + 1) + 3lm ( f − kh) HA = HE = 2 2 l ( kh + f ) + 4k f 2 + fh + h2
(
C s
I B
)
I
MOMENTOS FLECTORES
m
f 2
D
n
I
1
E
)
l
MC
MB
(
)
HA
MD
MA
VA
ME
HE VE
Prontuario para Cálculo de Estructuras
MB = MA − HA ⋅ h l MC = ME + VE − HE ( h + f ) 2 MD = ME − HE ⋅ h 3flh ( kl + 2m) − 4fm2 ( kh + 2h + f ) + 2kh2 ln+ f 2 l ( 4m − l ) 2 Pm kh + f ) + 4k f 2 + fh + h2 ( ME = 2 2l n n − m ( ) + 3k + 1 En BC 2fm My = MA + VA ⋅ m − HA h + l
h
1
A
3flh ( kl + 2m) − 4fm2 ( kh + 2 h + f ) + 2kh2 ln+ f 2 l ( 4m − l ) 2 Pm kh + f ) + 4k f 2 + fh + h2 ( MA = 2 2l n n − m ( ) − 3k + 1
(
I
2