A = amplitude ω = angular velocity = 2πf rad/s. 2π ω. = periodic time T seconds. 2 ω π. = frequency, f hertz α = angle of lead or lag (compared with y = A sin ωt) ...
Compound angle formulae sin(A B) = sin A cos B cos A sin B cos(A B) = cos A cos B tan(A B) =
sin A sin B
tan A tan B 1 tan A tan B
If R sin(ωt + α) = a sin ωt + b cos ωt, then a = R cos α, b = R sin α, R =
Double angles
(a 2 b2 ) and α = tan 1
b a
sin 2A = 2 sin A cos A cos 2A = cos 2 A – sin 2 A = 2 cos 2 A – 1 = 1 – 2 sin 2 A tan 2A =
2 tan A 1 tan 2 A
Products of sines and cosines into sums or differences sin A cos B =
1 [sin(A + B) + sin(A – B)] 2
cos A sin B =
1 [sin(A + B) – sin(A – B)] 2
cos A cos B =
1 [cos(A + B) + cos(A – B)] 2
sin A sin B = –
1 [cos(A + B) – cos(A – B)] 2
Sums or differences of sines and cosines into products x y x y sin x + sin y = 2 sin cos 2 2 x y x y sin x – sin y = 2 cos sin 2 2 14