MATEMÁTICA III (Semestre 2-2013)

7 ene. 2014 - MATEMÁTICA III (Semestre 2-2013). CONTENIDO PROGRAMÁTICO. Tema 1: Ecuaciones Diferenciales. Ecuaciones lineales de segundo.
247KB Größe 30 Downloads 67 vistas
MATEMÁTICA III (Semestre 2-2013)

CONTENIDO PROGRAMÁTICO Tema 1: Ecuaciones Diferenciales Ecuaciones lineales de segundo orden. Ecuaciones lineales no homogéneas.

Tema 2: Álgebra Lineal Sistemas lineales. Matrices. Multiplicación de matrices. Propiedades de las operaciones con matrices. Transformaciones matriciales. Soluciones de sistemas de ecuaciones lineales. La inversa de una matriz. Determinantes. Valores propios y vectores propios.

Tema 3: Vectores y Geometría del Espacio Sistemas de coordenadas tridimensionales. Vectores. El producto punto. El producto cruz. Rectas y planos en el espacio. Cilindros y superficies cuádricas. Transformaciones lineales.

Tema 4: Funciones con Valores Vectoriales y Movimiento en el Espacio Curvas en el espacio y sus tangentes. Integrales de funciones vectoriales. Longitud de arco en el espacio. Integrales de línea.

Tema 5: Derivadas Parciales Funciones de varias variables. Límites y continuidad en dimensiones superiores. Derivadas parciales. Regla de la cadena. Derivadas direccionales y vectores gradiente. Planos tangentes. Valores extremos y puntos de silla.

Tema 6: Integrales Múltiples Integrales dobles e iteradas sobre rectángulos. Integrales dobles sobre regiones generales. Áreas por doble integración. Integrales dobles en forma polar. Integrales triples en coordenadas rectangulares.

Tema 7: Series Sucesiones. Series infinitas. Criterios de la raíz y de la razón.

SECCIONES, PROFESORES HORARIOS Y AULAS SECCIÓN

PROFESOR(A)

B1

Manuel Maia (Coordinador)

B2

Freysimar Solano

HORARIO Y AULAS DIA LUNES MARTES MIÉRCOLES VIERNES

HORA 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00

AULA 05 y 09 09 05 y 13 01

DIA LUNES MARTES MIÉRCOLES VIERNES

HORA 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00

AULA 30 33 30 03

C1

Expedito Cedeño

DIA LUNES MARTES MIÉRCOLES JUEVES

HORA 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00

AULA 01 04 28 05

C2

Bertha Villegas

DIA LUNES MARTES MIÉRCOLES JUEVES

HORA 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00

AULA 32 34 35 34

Elio Méndez

DIA LUNES MARTES MIÉRCOLES JUEVES

HORA 11:00 - 1:00 9:00 - 11:00 7:00 - 9:00 9:00 - 11:00

AULA 06 15 16 27

Lorenzo Castagno

DIA LUNES MARTES MIÉRCOLES JUEVES

HORA 11:00 - 1:00 9:00 - 11:00 7:00 - 9:00 9:00 - 11:00

AULA 12 12 12 33

M1

Q1

EVALUACIÓN La evaluación consta de cuatro (4) quices y cuatro (4) exámenes parciales. El valor porcentual de cada quiz es de 5%. El valor porcentual de cada examen parcial es de 20%.

NORMATIVAS GENERALES RESPECTO A LOS QUICES, EXÁMENES PARCIALES Y EXAMEN DE REPARACIÓN 1. Los quices serán elaborados por los profesores de la materia y serán supervisados por el coordinador de la materia. 2. Los exámenes parciales serán elaborados por el coordinador de la materia y serán supervisados por la Comisión de Rendimiento Estudiantil y la Comisión de Docencia de la Escuela de Matemática. 3. Las fechas y contenido a evaluar pautados en el cronograma para los quices y los parciales no se cambiarán, salvo por motivo de fuerza mayor. En este caso, se indicará con suficiente anticipación el cambio de fecha y/o contenido. 4. El día y la hora pautados para el quiz o examen parcial el profesor o profesora deberá disponer de una lista actualizada de los estudiantes del curso. Pasará la lista y al momento de hacerlo, cada estudiante deberá presentar su carnet estudiantil o en su defecto cualquier otro documento formal de identificación. Sólo podrán presentar el quiz o examen aquellos estudiantes debidamente identificados y que aparezcan en la lista como no retirados. Esto implica que ningún estudiante podrá presentar un quiz o examen parcial en una sección en la cual no aparezca inscrito. 5. Los quices tendrán una duración de 1 (una) hora exacta y se aplicarán en la primera hora de la clase. 6. Los exámenes parciales tendrán una duración de 2 (dos) horas exactas. 7. Las preguntas durante los exámenes serán restringidas o no permitidas del todo. Queda a juicio de cada profesor o profesora cómo se aplica la restricción o si no permite preguntas durante el examen. 8. No estará permitido el uso de celulares, calculadoras o cualquier dispositivo de audio y/o video durante la aplicación de los quices o exámenes parciales. El estudiante que los empleare será retirado de éste y se considerará aplazado con la nota mínima. 9. El estudiante que empleare medios fraudulentos que comprometan la eficacia o integridad de su quiz o examen parcial, será retirado de éste y se considerará aplazado con la nota mínima. 10. No estará permitida la salida y posterior regreso al aula después del inicio de un quiz o examen parcial durante su aplicación. 11. Un quiz o examen sólo puede entregarse treinta (30) minutos después de iniciado.

12. Después de treinta (30) minutos de iniciado un quiz o examen ningún estudiante puede ingresar al aula. 13. No estará permitido el préstamo de útiles durante la aplicación de un quiz o examen. 14. Los quices no se recuperan (presentan nuevamente para intentar mejorar la nota) o difieren (presentan en fecha posterior en caso de inasistencia en la fecha pautada). 15. Las notas de los quices serán entregadas a más tardar cuatro (4) días hábiles después de su aplicación. 16. Las notas de los exámenes parciales serán entregadas a más tardar ocho (8) días hábiles después de su aplicación. 17. Sólo se puede diferir (presentar en fecha posterior en caso de inasistencia en la fecha pautada) uno (1) de los tres primeros exámenes parciales, solamente bajo alguna de las siguientes condiciones: i. Si la inasistencia ocurre por enfermedad del estudiante. En este caso, el estudiante debe traer un justificativo médico debidamente avalado por la autoridad competente a más tardar una semana después de la inasistencia al examen parcial. ii. Si la inasistencia ocurre porque el estudiante debe participar en una competencia deportiva. En este caso, el estudiante debe traer con suficiente anticipación un permiso debidamente avalado por la autoridad competente donde se indique claramente las fechas en que el estudiante estará participando en la competencia deportiva. Todos los exámenes diferidos serán elaborados por el coordinador y se aplicarán el día jueves 20 de marzo de 2014 en un aula y hora que se indicarán oportunamente. Aunque la inasistencia a un examen parcial esté debidamente justificada, el estudiante podrá diferir el examen solamente si su calificación acumulada en la materia es de al menos siete (7) puntos. 18. La fecha, hora y aula del examen de reparación será fijada por Control de Estudios. El examen de reparación será elaborado por el coordinador de la materia y será supervisado por la Comisión de Rendimiento Estudiantil y la Comisión de Docencia de la Escuela de Matemática. 19. Para el examen de reparación se aplicarán las mismas normativas 4, 6, 7, 8, 9, 10, 11, 12 y 13 referidas a los exámenes parciales y sólo podrán presentar el examen de reparación aquellos estudiantes debidamente inscritos, que no aparezcan como retirados en la lista actualizada del curso y que hayan aplazado la materia.

BIBLIOGRAFÍA 1.

Thomas, George. Cálculo, varias variables. Decimosegunda edición. PEARSON EDUCACIÓN, México, 2010. Puede descargarse una versión en pdf en la siguiente dirección: https://mega.co.nz/#!Q9l2hRRB!X3EhySGhotoJdMqNdE3WVDKjZzhl3rMbWLXe5ldtlbU

2.

Thomas, George. Cálculo, una variable. edición. PEARSON EDUCACIÓN, México, 2010.

Decimosegunda

Puede descargarse una versión en pdf en la siguiente dirección: https://mega.co.nz/#!0hFwDZwC!BR4H8G-OEDp_CPdnKkxyOwCVEvBpkd5SKspnCRz-dgQ

3.

Kolman, Bernard; Hill, David R. Álgebra lineal. Octava edición. PEARSON EDUCACIÓN, México, 2006. Puede descargarse una versión en pdf en la siguiente dirección: http://mediafire.com/?8q6fqe0su4qjkx0

CONTENIDO PROGRAMÁTICO RELATIVO A LA BIBLIOGRAFÍA Tema 1: Ecuaciones Diferenciales Capítulo 17 del Thomas

17.1 Ecuaciones lineales de segundo orden Ecuaciones homogéneas con coeficientes constantes Problemas de valor inicial y valor frontera 17.2 Ecuaciones lineales no homogéneas Forma de la solución general Método de los coeficientes indeterminados

Tema 2: Álgebra Lineal Capítulo 1 del Kolman

1.1 Sistemas Lineales 1.2 Matrices Suma de Matrices Multiplicación por un escalar La transpuesta de una matriz 1.3 Producto punto y multiplicación de matrices Multiplicación de matrices Sistemas lineales 1.4 Propiedades de las operaciones con matrices 1.5 Transformaciones matriciales 1.6 Soluciones de sistemas de ecuaciones lineales Resolución de sistemas lineales Sistemas homogéneos 1.7 La inversa de una matriz Un método práctico para determinar Sistemas lineales e inversas

Capítulo 3 del Kolman

3.1 Definición y propiedades

(Solamente se estudiarán el determinante para matrices de órdenes 2x2 y 3x3 (resultados de los ejemplos 5 y 6) y los Teoremas y Corolarios, sin demostración).

Capítulo 8 del Kolman

8.1 Valores propios y vectores

propios Cálculo de valores propios y de vectores propios

Tema 3: Vectores y Geometría del Espacio Capítulo 12 del Thomas 12.1 Sistemas de coordenadas tridimensionales: Distancia y esferas en el espacio 12.2 Vectores: Componentes Operaciones algebraicas con vectores Vectores unitarios Punto medio de un segmento de recta 12.3 El producto punto Ángulo entre vectores Vectores perpendiculares (ortogonales) Propiedades del producto punto y proyecciones de vectores 12.4 El producto cruz El producto cruz de dos vectores en el espacio uxv es el área de un paralelogramo Fórmula del determinante para uxv 12.5 Rectas y planos en el espacio Rectas y segmentos de recta en el espacio Distancia de un punto a una recta en el espacio Una ecuación para un plano en el espacio Rectas de intersección Distancia de un punto a un plano Ángulo entre planos

12.6 Cilindros y superficies cuádricas Cilindros Superficies cuádricas

Capítulo 4 del Kolman

4.3. Transformaciones Lineales

Tema 4: Funciones con Valores Vectoriales y Movimiento en el Espacio Capítulo 13 del Thomas

13.1 Curvas en el espacio y sus tangentes Derivadas y movimiento Reglas de derivación 13.2 Integrales de funciones vectoriales; movimiento de proyectiles Integrales de Funciones Vectoriales 13.3 Longitud de arco en el espacio Longitud de arco a lo largo de una curva en el espacio

Capítulo 16 del Thomas

16.1 Integrales de línea Aditividad

Tema 5: Derivadas Parciales Capítulo 14 del Thomas

14.1 Funciones de varias variables Dominios y rangos Funciones de dos variables Gráficas, curvas de nivel y contornos de funciones de dos variables Funciones de tres variables 14.2 Límites y continuidad en dimensiones superiores Límites para funciones de dos variables Continuidad Funciones de más de dos variables Valores extremos de funciones continuas en conjuntos cerrados y acotados

14.3 Derivadas parciales Derivadas parciales de una función de dos variables Cálculos Funciones de más de dos variables Derivadas parciales y continuidad Derivadas parciales de segundo orden Teorema de la derivada mixta Derivadas parciales de orden superior Diferenciabilidad 14.4 Regla de la cadena Funciones de dos variables Funciones de tres variables Funciones definidas en superficies Revisión de la derivación implícita Funciones de varias variables 14.5 Derivadas direccionales y vectores gradiente Derivadas direccionales en el plano Interpretación de la derivada direccional Cálculos y gradientes Gradientes y tangentes a curvas de nivel Funciones de tres variables 14.6 Planos tangentes y diferenciales Planos tangentes y rectas normales 14.7 Valores extremos y puntos de silla Criterios de las derivadas para los valores extremos locales Máximos y mínimo absolutos en regiones limitadas cerradas

Tema 6: Integrales Múltiples Capítulo 15 del Thomas 15.1 Integrales dobles e iteradas sobre rectángulos Integrales dobles Integrales dobles como volúmenes

Teorema de Fubini para calcular integrales dobles 15.2 Integrales dobles sobre regiones generales Integrales dobles en regiones acotadas no rectangulares Volúmenes Determinar los límites de integración Propiedades de las integrales dobles 15.3 Áreas por doble integración Área de regiones acotadas en el plano Valor promedio 15.4 Integrales dobles en forma polar Integrales en coordenadas polares Determinación de los límites de integración Cambio de integrales cartesianas a integrales polares 15.5 Integrales triples en coordenadas rectangulares Integrales triples Volumen de una región en el espacio Cálculo de límites de integración en el orden dzdydx

Valor promedio de una función en el espacio Propiedades de las integrales triples

Tema 7: Series Capítulo 10 del Thomas

10.1 Sucesiones Representación de sucesiones Convergencia y divergencia Cálculo de límites de sucesiones Uso de la regla de L'Hópital Límites que aparecen con frecuencia 10.2 Series infinitas Series geométricas El criterio del término n-ésimo para una serie divergente Combinación de series Adición o eliminación de términos Renumeración de los términos 10.5. Criterios de La raíz y de la razón Criterio de la razón Criterio de la raíz

Los ejercicios recomendados para la práctica son los siguientes: Del libro de Thomas: Todos los ejercicios impares de cada sección indicada, excepto los titulados "Teoría y ejemplos", "Teoría y Aplicaciones" o " Teoría y Problemas". Del libro de Kolman: Los ejercicios que sugiera el profesor en cada sección indicada.

CRONOGRAMA NOVIEMBRE 2013 dom 24

lun 25

mar

mié

26

27 Inicio de clases

jue 28

vie 29

sáb 30

DICIEMBRE 2013 dom

lun

mar

mié

jue

vie

sáb

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17 Primer Quiz

18 Fin del Tema 2

19

20

21

22

23

24

25

26

27

28

29

30

31

ENERO 2014 dom

lun

mar

mié

jue

vie

sáb

1

2

3

4

8

9

10

11

5

6

7

12

13

14

15

16

17

18

19

20

21 Segundo Quiz

22 Fin del Tema 4

23

24

25

26

27

28 Segundo Parcial

29

30

31

Primer Parcial

FEBRERO 2014 dom

lun

mar

mié

jue

vie

sáb 1

2

3 Feriado Carnaval

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 Tercer Quiz

19 Fin del Tema 5

20

21

22

23

24

25 Tercer Parcial

26

27

28

Feriado Carnaval

MARZO 2014 dom

lun

mar

mié

jue

vie

sáb 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18 Cuarto Quiz

19 Fin del Tema 7

20

21 Fin de Clases

22

23

24

25

26

27

28

29

30

31

FECHAS Y CONTENIDOS A EVALUAR EN LOS QUICES Y EXÁMENES PARCIALES EXAMEN

FECHA

CONTENIDO A EVALUAR (*)

PRIMER QUIZ

17/DIC/2013

Tema 1 completo y Tema 2 hasta 1.7

PRIMER PARCIAL

07/ENE/2014

Temas 1 y 2

SEGUNDO QUIZ

21/ENE/2014

Tema 3 completo y Tema 4 hasta 13.2

SEGUNDO PARCIAL

28/ENE/2014

Temas 3 y 4

TERCER QUIZ

18/FEB/2014

Tema 5 hasta 14.5

TERCER PARCIAL

25/FEB/2014

Tema 5

CUARTO QUIZ

18/MAR/2014

Tema 6

CUARTO PARCIAL

FIJADA POR C.E. PARA EL EXAMEN FINAL

Temas 6 y 7

(*) Ver el contenido programático relativo a la bibliografía. IMPORTANTE: Cualquier observación, queja o sugerencia debe hacerlo por escrito al profesor de su sección. En su defecto al coordinador de la materia, Profesor Manuel Maia ([email protected]).