MATEMÁTICA III (Semestre 2-2013)
CONTENIDO PROGRAMÁTICO Tema 1: Ecuaciones Diferenciales Ecuaciones lineales de segundo orden. Ecuaciones lineales no homogéneas.
Tema 2: Álgebra Lineal Sistemas lineales. Matrices. Multiplicación de matrices. Propiedades de las operaciones con matrices. Transformaciones matriciales. Soluciones de sistemas de ecuaciones lineales. La inversa de una matriz. Determinantes. Valores propios y vectores propios.
Tema 3: Vectores y Geometría del Espacio Sistemas de coordenadas tridimensionales. Vectores. El producto punto. El producto cruz. Rectas y planos en el espacio. Cilindros y superficies cuádricas. Transformaciones lineales.
Tema 4: Funciones con Valores Vectoriales y Movimiento en el Espacio Curvas en el espacio y sus tangentes. Integrales de funciones vectoriales. Longitud de arco en el espacio. Integrales de línea.
Tema 5: Derivadas Parciales Funciones de varias variables. Límites y continuidad en dimensiones superiores. Derivadas parciales. Regla de la cadena. Derivadas direccionales y vectores gradiente. Planos tangentes. Valores extremos y puntos de silla.
Tema 6: Integrales Múltiples Integrales dobles e iteradas sobre rectángulos. Integrales dobles sobre regiones generales. Áreas por doble integración. Integrales dobles en forma polar. Integrales triples en coordenadas rectangulares.
Tema 7: Series Sucesiones. Series infinitas. Criterios de la raíz y de la razón.
SECCIONES, PROFESORES HORARIOS Y AULAS SECCIÓN
PROFESOR(A)
B1
Manuel Maia (Coordinador)
B2
Freysimar Solano
HORARIO Y AULAS DIA LUNES MARTES MIÉRCOLES VIERNES
HORA 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00
AULA 05 y 09 09 05 y 13 01
DIA LUNES MARTES MIÉRCOLES VIERNES
HORA 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00 1:00 – 3:00
AULA 30 33 30 03
C1
Expedito Cedeño
DIA LUNES MARTES MIÉRCOLES JUEVES
HORA 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00
AULA 01 04 28 05
C2
Bertha Villegas
DIA LUNES MARTES MIÉRCOLES JUEVES
HORA 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00 9:00 - 11:00
AULA 32 34 35 34
Elio Méndez
DIA LUNES MARTES MIÉRCOLES JUEVES
HORA 11:00 - 1:00 9:00 - 11:00 7:00 - 9:00 9:00 - 11:00
AULA 06 15 16 27
Lorenzo Castagno
DIA LUNES MARTES MIÉRCOLES JUEVES
HORA 11:00 - 1:00 9:00 - 11:00 7:00 - 9:00 9:00 - 11:00
AULA 12 12 12 33
M1
Q1
EVALUACIÓN La evaluación consta de cuatro (4) quices y cuatro (4) exámenes parciales. El valor porcentual de cada quiz es de 5%. El valor porcentual de cada examen parcial es de 20%.
NORMATIVAS GENERALES RESPECTO A LOS QUICES, EXÁMENES PARCIALES Y EXAMEN DE REPARACIÓN 1. Los quices serán elaborados por los profesores de la materia y serán supervisados por el coordinador de la materia. 2. Los exámenes parciales serán elaborados por el coordinador de la materia y serán supervisados por la Comisión de Rendimiento Estudiantil y la Comisión de Docencia de la Escuela de Matemática. 3. Las fechas y contenido a evaluar pautados en el cronograma para los quices y los parciales no se cambiarán, salvo por motivo de fuerza mayor. En este caso, se indicará con suficiente anticipación el cambio de fecha y/o contenido. 4. El día y la hora pautados para el quiz o examen parcial el profesor o profesora deberá disponer de una lista actualizada de los estudiantes del curso. Pasará la lista y al momento de hacerlo, cada estudiante deberá presentar su carnet estudiantil o en su defecto cualquier otro documento formal de identificación. Sólo podrán presentar el quiz o examen aquellos estudiantes debidamente identificados y que aparezcan en la lista como no retirados. Esto implica que ningún estudiante podrá presentar un quiz o examen parcial en una sección en la cual no aparezca inscrito. 5. Los quices tendrán una duración de 1 (una) hora exacta y se aplicarán en la primera hora de la clase. 6. Los exámenes parciales tendrán una duración de 2 (dos) horas exactas. 7. Las preguntas durante los exámenes serán restringidas o no permitidas del todo. Queda a juicio de cada profesor o profesora cómo se aplica la restricción o si no permite preguntas durante el examen. 8. No estará permitido el uso de celulares, calculadoras o cualquier dispositivo de audio y/o video durante la aplicación de los quices o exámenes parciales. El estudiante que los empleare será retirado de éste y se considerará aplazado con la nota mínima. 9. El estudiante que empleare medios fraudulentos que comprometan la eficacia o integridad de su quiz o examen parcial, será retirado de éste y se considerará aplazado con la nota mínima. 10. No estará permitida la salida y posterior regreso al aula después del inicio de un quiz o examen parcial durante su aplicación. 11. Un quiz o examen sólo puede entregarse treinta (30) minutos después de iniciado.
12. Después de treinta (30) minutos de iniciado un quiz o examen ningún estudiante puede ingresar al aula. 13. No estará permitido el préstamo de útiles durante la aplicación de un quiz o examen. 14. Los quices no se recuperan (presentan nuevamente para intentar mejorar la nota) o difieren (presentan en fecha posterior en caso de inasistencia en la fecha pautada). 15. Las notas de los quices serán entregadas a más tardar cuatro (4) días hábiles después de su aplicación. 16. Las notas de los exámenes parciales serán entregadas a más tardar ocho (8) días hábiles después de su aplicación. 17. Sólo se puede diferir (presentar en fecha posterior en caso de inasistencia en la fecha pautada) uno (1) de los tres primeros exámenes parciales, solamente bajo alguna de las siguientes condiciones: i. Si la inasistencia ocurre por enfermedad del estudiante. En este caso, el estudiante debe traer un justificativo médico debidamente avalado por la autoridad competente a más tardar una semana después de la inasistencia al examen parcial. ii. Si la inasistencia ocurre porque el estudiante debe participar en una competencia deportiva. En este caso, el estudiante debe traer con suficiente anticipación un permiso debidamente avalado por la autoridad competente donde se indique claramente las fechas en que el estudiante estará participando en la competencia deportiva. Todos los exámenes diferidos serán elaborados por el coordinador y se aplicarán el día jueves 20 de marzo de 2014 en un aula y hora que se indicarán oportunamente. Aunque la inasistencia a un examen parcial esté debidamente justificada, el estudiante podrá diferir el examen solamente si su calificación acumulada en la materia es de al menos siete (7) puntos. 18. La fecha, hora y aula del examen de reparación será fijada por Control de Estudios. El examen de reparación será elaborado por el coordinador de la materia y será supervisado por la Comisión de Rendimiento Estudiantil y la Comisión de Docencia de la Escuela de Matemática. 19. Para el examen de reparación se aplicarán las mismas normativas 4, 6, 7, 8, 9, 10, 11, 12 y 13 referidas a los exámenes parciales y sólo podrán presentar el examen de reparación aquellos estudiantes debidamente inscritos, que no aparezcan como retirados en la lista actualizada del curso y que hayan aplazado la materia.
BIBLIOGRAFÍA 1.
Thomas, George. Cálculo, varias variables. Decimosegunda edición. PEARSON EDUCACIÓN, México, 2010. Puede descargarse una versión en pdf en la siguiente dirección: https://mega.co.nz/#!Q9l2hRRB!X3EhySGhotoJdMqNdE3WVDKjZzhl3rMbWLXe5ldtlbU
2.
Thomas, George. Cálculo, una variable. edición. PEARSON EDUCACIÓN, México, 2010.
Decimosegunda
Puede descargarse una versión en pdf en la siguiente dirección: https://mega.co.nz/#!0hFwDZwC!BR4H8G-OEDp_CPdnKkxyOwCVEvBpkd5SKspnCRz-dgQ
3.
Kolman, Bernard; Hill, David R. Álgebra lineal. Octava edición. PEARSON EDUCACIÓN, México, 2006. Puede descargarse una versión en pdf en la siguiente dirección: http://mediafire.com/?8q6fqe0su4qjkx0
CONTENIDO PROGRAMÁTICO RELATIVO A LA BIBLIOGRAFÍA Tema 1: Ecuaciones Diferenciales Capítulo 17 del Thomas
17.1 Ecuaciones lineales de segundo orden Ecuaciones homogéneas con coeficientes constantes Problemas de valor inicial y valor frontera 17.2 Ecuaciones lineales no homogéneas Forma de la solución general Método de los coeficientes indeterminados
Tema 2: Álgebra Lineal Capítulo 1 del Kolman
1.1 Sistemas Lineales 1.2 Matrices Suma de Matrices Multiplicación por un escalar La transpuesta de una matriz 1.3 Producto punto y multiplicación de matrices Multiplicación de matrices Sistemas lineales 1.4 Propiedades de las operaciones con matrices 1.5 Transformaciones matriciales 1.6 Soluciones de sistemas de ecuaciones lineales Resolución de sistemas lineales Sistemas homogéneos 1.7 La inversa de una matriz Un método práctico para determinar Sistemas lineales e inversas
Capítulo 3 del Kolman
3.1 Definición y propiedades
(Solamente se estudiarán el determinante para matrices de órdenes 2x2 y 3x3 (resultados de los ejemplos 5 y 6) y los Teoremas y Corolarios, sin demostración).
Capítulo 8 del Kolman
8.1 Valores propios y vectores
propios Cálculo de valores propios y de vectores propios
Tema 3: Vectores y Geometría del Espacio Capítulo 12 del Thomas 12.1 Sistemas de coordenadas tridimensionales: Distancia y esferas en el espacio 12.2 Vectores: Componentes Operaciones algebraicas con vectores Vectores unitarios Punto medio de un segmento de recta 12.3 El producto punto Ángulo entre vectores Vectores perpendiculares (ortogonales) Propiedades del producto punto y proyecciones de vectores 12.4 El producto cruz El producto cruz de dos vectores en el espacio uxv es el área de un paralelogramo Fórmula del determinante para uxv 12.5 Rectas y planos en el espacio Rectas y segmentos de recta en el espacio Distancia de un punto a una recta en el espacio Una ecuación para un plano en el espacio Rectas de intersección Distancia de un punto a un plano Ángulo entre planos
12.6 Cilindros y superficies cuádricas Cilindros Superficies cuádricas
Capítulo 4 del Kolman
4.3. Transformaciones Lineales
Tema 4: Funciones con Valores Vectoriales y Movimiento en el Espacio Capítulo 13 del Thomas
13.1 Curvas en el espacio y sus tangentes Derivadas y movimiento Reglas de derivación 13.2 Integrales de funciones vectoriales; movimiento de proyectiles Integrales de Funciones Vectoriales 13.3 Longitud de arco en el espacio Longitud de arco a lo largo de una curva en el espacio
Capítulo 16 del Thomas
16.1 Integrales de línea Aditividad
Tema 5: Derivadas Parciales Capítulo 14 del Thomas
14.1 Funciones de varias variables Dominios y rangos Funciones de dos variables Gráficas, curvas de nivel y contornos de funciones de dos variables Funciones de tres variables 14.2 Límites y continuidad en dimensiones superiores Límites para funciones de dos variables Continuidad Funciones de más de dos variables Valores extremos de funciones continuas en conjuntos cerrados y acotados
14.3 Derivadas parciales Derivadas parciales de una función de dos variables Cálculos Funciones de más de dos variables Derivadas parciales y continuidad Derivadas parciales de segundo orden Teorema de la derivada mixta Derivadas parciales de orden superior Diferenciabilidad 14.4 Regla de la cadena Funciones de dos variables Funciones de tres variables Funciones definidas en superficies Revisión de la derivación implícita Funciones de varias variables 14.5 Derivadas direccionales y vectores gradiente Derivadas direccionales en el plano Interpretación de la derivada direccional Cálculos y gradientes Gradientes y tangentes a curvas de nivel Funciones de tres variables 14.6 Planos tangentes y diferenciales Planos tangentes y rectas normales 14.7 Valores extremos y puntos de silla Criterios de las derivadas para los valores extremos locales Máximos y mínimo absolutos en regiones limitadas cerradas
Tema 6: Integrales Múltiples Capítulo 15 del Thomas 15.1 Integrales dobles e iteradas sobre rectángulos Integrales dobles Integrales dobles como volúmenes
Teorema de Fubini para calcular integrales dobles 15.2 Integrales dobles sobre regiones generales Integrales dobles en regiones acotadas no rectangulares Volúmenes Determinar los límites de integración Propiedades de las integrales dobles 15.3 Áreas por doble integración Área de regiones acotadas en el plano Valor promedio 15.4 Integrales dobles en forma polar Integrales en coordenadas polares Determinación de los límites de integración Cambio de integrales cartesianas a integrales polares 15.5 Integrales triples en coordenadas rectangulares Integrales triples Volumen de una región en el espacio Cálculo de límites de integración en el orden dzdydx
Valor promedio de una función en el espacio Propiedades de las integrales triples
Tema 7: Series Capítulo 10 del Thomas
10.1 Sucesiones Representación de sucesiones Convergencia y divergencia Cálculo de límites de sucesiones Uso de la regla de L'Hópital Límites que aparecen con frecuencia 10.2 Series infinitas Series geométricas El criterio del término n-ésimo para una serie divergente Combinación de series Adición o eliminación de términos Renumeración de los términos 10.5. Criterios de La raíz y de la razón Criterio de la razón Criterio de la raíz
Los ejercicios recomendados para la práctica son los siguientes: Del libro de Thomas: Todos los ejercicios impares de cada sección indicada, excepto los titulados "Teoría y ejemplos", "Teoría y Aplicaciones" o " Teoría y Problemas". Del libro de Kolman: Los ejercicios que sugiera el profesor en cada sección indicada.
CRONOGRAMA NOVIEMBRE 2013 dom 24
lun 25
mar
mié
26
27 Inicio de clases
jue 28
vie 29
sáb 30
DICIEMBRE 2013 dom
lun
mar
mié
jue
vie
sáb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 Primer Quiz
18 Fin del Tema 2
19
20
21
22
23
24
25
26
27
28
29
30
31
ENERO 2014 dom
lun
mar
mié
jue
vie
sáb
1
2
3
4
8
9
10
11
5
6
7
12
13
14
15
16
17
18
19
20
21 Segundo Quiz
22 Fin del Tema 4
23
24
25
26
27
28 Segundo Parcial
29
30
31
Primer Parcial
FEBRERO 2014 dom
lun
mar
mié
jue
vie
sáb 1
2
3 Feriado Carnaval
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 Tercer Quiz
19 Fin del Tema 5
20
21
22
23
24
25 Tercer Parcial
26
27
28
Feriado Carnaval
MARZO 2014 dom
lun
mar
mié
jue
vie
sáb 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 Cuarto Quiz
19 Fin del Tema 7
20
21 Fin de Clases
22
23
24
25
26
27
28
29
30
31
FECHAS Y CONTENIDOS A EVALUAR EN LOS QUICES Y EXÁMENES PARCIALES EXAMEN
FECHA
CONTENIDO A EVALUAR (*)
PRIMER QUIZ
17/DIC/2013
Tema 1 completo y Tema 2 hasta 1.7
PRIMER PARCIAL
07/ENE/2014
Temas 1 y 2
SEGUNDO QUIZ
21/ENE/2014
Tema 3 completo y Tema 4 hasta 13.2
SEGUNDO PARCIAL
28/ENE/2014
Temas 3 y 4
TERCER QUIZ
18/FEB/2014
Tema 5 hasta 14.5
TERCER PARCIAL
25/FEB/2014
Tema 5
CUARTO QUIZ
18/MAR/2014
Tema 6
CUARTO PARCIAL
FIJADA POR C.E. PARA EL EXAMEN FINAL
Temas 6 y 7
(*) Ver el contenido programático relativo a la bibliografía. IMPORTANTE: Cualquier observación, queja o sugerencia debe hacerlo por escrito al profesor de su sección. En su defecto al coordinador de la materia, Profesor Manuel Maia (
[email protected]).