9) ∫ dxx ∫ ∫ 9) ∫ dx ∫

identidades trigonométricas. c) Para que tipos de integrando se recomienda el método de integración por sustitución trigonométrica. II. Resuelve las siguientes ...
122KB Größe 7 Downloads 150 vistas
CHICOLOAPAN

CÁLCULO INTEGRAL Ejercicios de apoyo 2.

I. Contesta las siguientes cuestiones: a) Para que tipos de integrando se recomienda el método de integración por partes. b) Para que tipos de integrando se recomienda el método de integración que emplea identidades trigonométricas. c) Para que tipos de integrando se recomienda el método de integración por sustitución trigonométrica. II. Resuelve las siguientes integrales indefinidas por el método de integración por partes: 1) 2) 3) 4) 5) 6) 7)

∫ ∫ x cos x dx ∫ ln x dx ∫ x sec 3x dx ∫ x a dx ∫ x e dx ∫ x e dx x senx dx

2

x

x

2 x

∫ 9) ∫ e cos x dx 10) arctan x dx ∫ 11) ∫ x e dx 12) x sen 4 x dx ∫ 13) x ln x dx ∫ 14) ∫ sec x dx 8)

∫ 16) ∫ ln(x + 2)dx 17) ∫ x ln x dx 18) arcsen x dx ∫ 19) sen x dx ∫ x e dx 20) ∫ (1 + x)

e x sen x dx

15)

(ln x) 2 dx 2

x

2

2x

x

2

3

III. Resuelve las siguientes integrales trigonométricas indefinidas por medio de identidades trigonométricas: 1) 2) 3) 4)

∫ ∫ sen x dx ∫ sen x cos x dx ∫ sen x dx 2

sen x dx

5)

3

6)

2

4

2

7) 8)

∫ ∫ cos x dx ∫ sen 5x cos 5x dx ∫ sen x cos x dx sen 5 x dx 5

3

4

4

5

9) 10) 11) 12)

ACADEMIA DEL ÁREA FÍSICO – MATEMÁTICAS

sen 3 x

∫ cos x dx ∫ tan 4x dx ∫ tan x sec x dx ∫ tan x dx 5

2

3

5

4

CHICOLOAPAN 13) 14) 15) 16) 17)

∫ ∫ tan x dx ∫ tan x sec x dx ∫ tan x sec x dx ∫ cot x dx

tan 3 x sec 5 x dx 4

3

3

3

3

18) 19) 20) 21) 22)

CÁLCULO INTEGRAL

∫ cot x dx ∫ cot x dx ∫ cot x csc x dx ∫ cot x csc x dx ∫ cot x csc x dx 5

4

3

3

3

3

5

Ejercicios de apoyo 2.

23) 24) 25)

∫ cot x csc ∫ csc x dx ∫ csc x dx 2

4

x dx

4

6

IV. Resuelve las siguientes integrales indefinidas por el método de sustitución trigonométrica: 1)

∫ x 4+ x x dx ∫ x −4 dx

2

2

2

2) 3) 4) 5)

7)

2

∫ dx ∫ x 9 + 4x dx ∫ (4 − x ) 25 − x ∫ x dx dx ∫ x a −x x +a ∫ x dx 2

2 3/ 2

2

2

8)

2

3

18)

2

2

19) 20)

2 2

2

21)

2

2

15)

2

2

2

17)

2

9 − 4x2 dx x

2

dx

2

2

6)

∫ x 9−x x dx 10) ∫ x − 16 11) ∫ x a − x dx dx 12) ∫ (9 + x ) 9−x 13) ∫ x dx dx 14) ∫ x x +4 9)

16)

2

∫ a −u du ∫a +u du

2

2

22)

2

23) 24)

∫u u −a du ∫ a −u du ∫u −a du ∫ u +a du ∫ u −a ∫ a −u ∫ a +u ∫ u −a

2

ACADEMIA DEL ÁREA FÍSICO – MATEMÁTICAS

du 2

2

2

2

2

2

2

2

2

2

2

2

du

2

2

du

2

2

du