MC33274 - SP-Elektroniikka

Literature Distribution Centers: USA: Motorola. Literature. Distribution;. P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola. Ltd.; European. Literature.
1MB Größe 25 Downloads 63 vistas
Order this data sheet by MC33272/D

MC33272 MC33274

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

SINGLE SUPPLY, HIGH SLEW RATE LOW INPUT OFFSET VOLTAGE, BIPOLAR OPERATIONAL AMPLIFIERS The MC33272/4 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts, This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip-R-Trim element for input offset voltage reduction. The MC33272/4 series of operational amplifiers exhibits a low input offset voltage and high gain bandwidth prodis used to increase the uct. Dual-doublet frequency compensation slew rate while

maintaining

low in~ut

noise characteristics.

,.,.

?.,,

.)

33272

4 s ~&Y

8 > ,,),*; ... .,$,. ..\

Its all

D SUFFIX ‘&$~P SUFFIX .*,. NPN output stage exhibit: no deadband crossover distortion, ~ ~,,,> *.:: PLASTIC PACKAGE ~PtASTIC PACKAGE large output voltage swing, and an excellent phase and gain mar,,:,~3: ,*.1* CASE 751 CASE 626 .,*:.% ~,q,i~’ gin. It also provides a low open-loop high frequency output ~.X.,. .....*, (SO-8) impedance with symmetrical source and sink AC frequenc~$: ‘: .?.$$ performance. >,.;, :*lh ‘Ib PIN ASSIGNMENTS The MC33272/4 series is specified over – 4VC to + 85”Ca$~ i$j available in the plastic DIP and SOIC surface mount paq&$:~g’TP output 1 Vcc ,\\:\, \ and D suffixes). \’i.~t ●

output 2 Inputs 1



e

I

Inputs 2



VEE

e

1

e

(Dual, Top View)

e e MC33274

e e y

e ●

14

(’~

Ym

,4%4 ..., 1

e

1

P SUFFIX PLASTIC PACKAGE CASE 646



D SUFFIX PLASTIC PACKAGE CASE 751A (s0-14)

PIN ASSIGNMENTS output

1

output 4

Inputs 1

inputs 4 (

ORDERING INFORMATION Op Amp Function

Device

Specified Ambient Temperature Range

MC33272D MC33272P

– 40°C to + 85°C

Plastic DIP

VEE

Inputs 2

Inputs 3 1

{ output 2

output 3

SO-14

Quad

MC33274P

Vcc

Package SO-8

Dual MC33274D

1

}

Plastic DIP

(Quad, Top View) I~IMOTOROLAINC., 1990

DS9735

B

AC ELECTRICAL CHARACTERISTICS

I

(Vcc

= -15

V, VEE = -15

V, TA = 25”C unless

Characteristic

I

Slew Rate (Vin = -lOVto

+IOV,

RL = 2. Okfl, CL = IOOPF, AV =

Figure

I Svmbol

otherwise \

AC Voltage Gain (RL = 2,0 kf), VO = O V, f = 20 kHz)

I

Typ

I

Max

I

Unit

]

18, 33

SR 8.0

10

19

G BW

17

24

20, 21, 22

AvO



65

dB

fu



5.5

MHz



12

v~s

tl.0)

Gain Bandwidth Product (f = 100 kHz)

Min

noted}

Unity Gain FrequencV (Open-Loop)

MHz

Gain Margin (RL = 2.0 kfl, CL = O pF)

23, 24, 26

Am

Phase Margin (RL = 2.0 kQ, CL = O pF)

23, 25, 26

@m



55



27

Cs



-120



BWp



160

~


$

\

= –1,0 +

\

a >

E- 400 < z —n a o -60 -40-20

I

~ +1.0 + %

\

\

\ \





~

~

~

~ 1

3 I >0

i.. . .. ,$,,3~..-. ~‘~’.. ~,) 5.,. :$1. ... ~f? .,

1 –

~

.’.,.,, . .,. i\%.:, ~y:l~ *...., ‘$ 3– vlo— -5.0 -55

Vlo

(, I 25”C

~

0 +20 +40 +60 +80*100 +120 t140+160t 180

-25

+~$,,$~ t 75 +25 ii ,*1 TA,AM81~N~~&~fERATURE (“C) ,.,... >‘!.;!t:.\,,t.:;& ,::,..,>,, ,~} .$ 0 ; z 3 w & ~

-

160

~

/ y 140

g L o

—vCc= +15V VEE= -15V ~ 120— RL = 2.0kfl & f=lOHz o i Avo= –Iovto+lov o a> 100 -55

TA,AMBIENTTEMPERATURE(°C)

I

I

-25

0

+ 25

t 50

+ 75

+100

+ 125

TA,AMBIENTTEMPERATURE(°C)

MOTOROLA 4

MC33272

* MC33274

FIGURE 8 — SPLIT SUPPLY OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE

FIGURE 9 — SPLIT SUPPLY OUTPUT SATURATION versus LOAD CURRENT

40

I

—TA.25C

0 5.0

10 15 Vcc, VEE SUPPLY VOLTAGE (V)

Source

1

1

o

VOLTAGE

I

!

1

..,,.

. ,

,

I

J

20

FIGURE 10 — SINGLE SUPPLY OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO GROUND

FIGURE 11 ~,~lN&& VOLTA&$Q~sus

SUPPLY OUTPUT SATURATION LOAD RESISTANCE TO Vcc

RL, LOAD RESISTANCE TO VCC (f))

FIGURE 13 — COMMON MODE REJECTION versus FREQUENCY 120

l,Ok

10k

100k f, FREQUENCY (Hz)

MC33272



MC33274

1.OM

10M

10

100

l,Ok

10k

100k

1,OM

f, FREQUENCY (Hz)

MOTORO~ 5

FIGURE 14 — POSITIVE POWER SUPPLY REJECTION versus FREQUENCY

FIGURE 15 — NEGATIVE POWER SUPPLY REJECTION versus FREQUENCY

120

120

0

10

100

l,Ok

10k

100k

1,OM

f,FREQUENCY (Hz)

FIGURE 16 — OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE

z

60

2 w

50

g

I I Vcc= +15V VEE= -15V vlD = tl.OV

o

2,0

4.0

6.0

8.0

10

12

14

16

18

20

Vcc,IVEE,SUPPLYVOLTAGE (V)

FIGURE 19 — GAIN BANDWIDTH

PRODUCT

versus TEMPERATURE

r tr

1,15

~ 1,1 ,,,

I

-55

– 25

VI

0

I

+25

t 50

V;r= +l:V

+75

TA,AMBIENTTEMPERATUREPC)

MOTOROLA 6

+100

I

+125

-55

– 25

0

+25

+50

+ 75

+ 100

+125

TA,AMBIENTTEMPERATURE(“C)

MC33272



MC33274

FIGURE 20 — VOLTAGE GAIN & PHASE versus

FREQUENCY

-25

80

+ 20

100

-15 = ~+lo z < -5.0 u u w o a ~ -50 > a> – 10

120

FREQUENCY

FIGURE 21 — GAIN AND PHASE versus

140 160 180 200 220

-15

240

-20

260

?5 -iook

?90 --” 100M

l,OM 10M f,FREQUENCY (Hz)

-1 ! 111

I

-251

!1!

..

I

,

!

!

,

+!.

~.;:,

FIGURE 22 — OPEN-LOOP VOLTAGE GAIN & PHASE versus FREQUENCY ~ 20

o

100 120 !40

+ 10 ~ \

_

Vcc= ‘VEE=

-15V

0

Vout=ov

_,o

t

\ -

+

I

I

160

.

\ ~ +15v-

2A

180 200

I

I \\

TA = 25°C

lB —-

,#o

~.

t

– 20

i

a~ 2.0

I

,,... -30

I I

0

1,0

!.1.,~,,!

111111

10

IIIH 1000

100

CL,OUTPUT LOAD CAPACITANCE (pF)

FIGURE 25 — PHASE MARGIN

g — z E

12

60

10

50

versus

TEMPERATURE

I CL=

40 2 z z

30

L

o 0 + z

CL = 500pF —

CL = 500pF_ —

4.0



__

300pF-

1





20

&

o Vcc= VEE=

aE 2.0

o~

-55

+15V –15VA

QE

I -25

+75 +25 +50 0 TA,AM81ENT TEMPERATURE (“C)

MC33272 o MC33274

+100

+125

Vcc= VEE=

10

-055

I -25

1

I

I

I

+25 +50 +75 0 TA,AM81ENT TEMPERATURE ICI

+15V –15V I

1

I

+100

+125

MOTOROLA 7

FIGURE 26 — PHASE MARGIN AND GAIN MARGIN DIFFERENTIAL SOURCE RESISTANCE 15 12

I

versus

FIGURE 27 — CHANNEL ..

I

SEPARATION

160

bU

FREQUENCY

versus

Ill I

n

I

I 111!11

I

I

I 111111

1

1 1

1 1

I

I

I 11111

Drive Channel

z = 9.0 g w m ~ 6,0 z a ‘. 3,0 aE o–

10

=E

n

10

10

100

l.Ok RT,DIFFERENTIAL SOURCERESISTANCE (f])

FIGURE 28 — TOTAL HARMONIC versus

100

10[

l,Ok

DISTORTION

FREQUENCY

10 k

100k

l,OM

10M

f, FREQUENCY (Hz]

FIGURE 31 — INPUT REFERRED NOISE CURRENT versus

~ c

,,:.,