Order this data sheet by MC33272/D
MC33272 MC33274
MOTOROLA
SEMICONDUCTOR TECHNICAL DATA
SINGLE SUPPLY, HIGH SLEW RATE LOW INPUT OFFSET VOLTAGE, BIPOLAR OPERATIONAL AMPLIFIERS The MC33272/4 series of monolithic operational amplifiers are quality fabricated with innovative Bipolar design concepts, This dual and quad operational amplifier series incorporates Bipolar inputs along with a patented Zip-R-Trim element for input offset voltage reduction. The MC33272/4 series of operational amplifiers exhibits a low input offset voltage and high gain bandwidth prodis used to increase the uct. Dual-doublet frequency compensation slew rate while
maintaining
low in~ut
noise characteristics.
,.,.
?.,,
.)
33272
4 s ~&Y
8 > ,,),*; ... .,$,. ..\
Its all
D SUFFIX ‘&$~P SUFFIX .*,. NPN output stage exhibit: no deadband crossover distortion, ~ ~,,,> *.:: PLASTIC PACKAGE ~PtASTIC PACKAGE large output voltage swing, and an excellent phase and gain mar,,:,~3: ,*.1* CASE 751 CASE 626 .,*:.% ~,q,i~’ gin. It also provides a low open-loop high frequency output ~.X.,. .....*, (SO-8) impedance with symmetrical source and sink AC frequenc~$: ‘: .?.$$ performance. >,.;, :*lh ‘Ib PIN ASSIGNMENTS The MC33272/4 series is specified over – 4VC to + 85”Ca$~ i$j available in the plastic DIP and SOIC surface mount paq&$:~g’TP output 1 Vcc ,\\:\, \ and D suffixes). \’i.~t ●
output 2 Inputs 1
✠
e
I
Inputs 2
●
VEE
e
1
e
(Dual, Top View)
e e MC33274
e e y
e ●
14
(’~
Ym
,4%4 ..., 1
e
1
P SUFFIX PLASTIC PACKAGE CASE 646
●
D SUFFIX PLASTIC PACKAGE CASE 751A (s0-14)
PIN ASSIGNMENTS output
1
output 4
Inputs 1
inputs 4 (
ORDERING INFORMATION Op Amp Function
Device
Specified Ambient Temperature Range
MC33272D MC33272P
– 40°C to + 85°C
Plastic DIP
VEE
Inputs 2
Inputs 3 1
{ output 2
output 3
SO-14
Quad
MC33274P
Vcc
Package SO-8
Dual MC33274D
1
}
Plastic DIP
(Quad, Top View) I~IMOTOROLAINC., 1990
DS9735
B
AC ELECTRICAL CHARACTERISTICS
I
(Vcc
= -15
V, VEE = -15
V, TA = 25”C unless
Characteristic
I
Slew Rate (Vin = -lOVto
+IOV,
RL = 2. Okfl, CL = IOOPF, AV =
Figure
I Svmbol
otherwise \
AC Voltage Gain (RL = 2,0 kf), VO = O V, f = 20 kHz)
I
Typ
I
Max
I
Unit
]
18, 33
SR 8.0
10
19
G BW
17
24
20, 21, 22
AvO
—
65
dB
fu
—
5.5
MHz
—
12
v~s
tl.0)
Gain Bandwidth Product (f = 100 kHz)
Min
noted}
Unity Gain FrequencV (Open-Loop)
MHz
Gain Margin (RL = 2.0 kfl, CL = O pF)
23, 24, 26
Am
Phase Margin (RL = 2.0 kQ, CL = O pF)
23, 25, 26
@m
—
55
—
27
Cs
—
-120
—
BWp
—
160
~
$
\
= –1,0 +
\
a >
E- 400 < z —n a o -60 -40-20
I
~ +1.0 + %
\
\
\ \
—
—
~
~
~
~ 1
3 I >0
i.. . .. ,$,,3~..-. ~‘~’.. ~,) 5.,. :$1. ... ~f? .,
1 –
~
.’.,.,, . .,. i\%.:, ~y:l~ *...., ‘$ 3– vlo— -5.0 -55
Vlo
(, I 25”C
~
0 +20 +40 +60 +80*100 +120 t140+160t 180
-25
+~$,,$~ t 75 +25 ii ,*1 TA,AM81~N~~&~fERATURE (“C) ,.,... >‘!.;!t:.\,,t.:;& ,::,..,>,, ,~} .$ 0 ; z 3 w & ~
-
160
~
/ y 140
g L o
—vCc= +15V VEE= -15V ~ 120— RL = 2.0kfl & f=lOHz o i Avo= –Iovto+lov o a> 100 -55
TA,AMBIENTTEMPERATURE(°C)
I
I
-25
0
+ 25
t 50
+ 75
+100
+ 125
TA,AMBIENTTEMPERATURE(°C)
MOTOROLA 4
MC33272
* MC33274
FIGURE 8 — SPLIT SUPPLY OUTPUT VOLTAGE SWING versus SUPPLY VOLTAGE
FIGURE 9 — SPLIT SUPPLY OUTPUT SATURATION versus LOAD CURRENT
40
I
—TA.25C
0 5.0
10 15 Vcc, VEE SUPPLY VOLTAGE (V)
Source
1
1
o
VOLTAGE
I
!
1
..,,.
. ,
,
I
J
20
FIGURE 10 — SINGLE SUPPLY OUTPUT SATURATION VOLTAGE versus LOAD RESISTANCE TO GROUND
FIGURE 11 ~,~lN&& VOLTA&$Q~sus
SUPPLY OUTPUT SATURATION LOAD RESISTANCE TO Vcc
RL, LOAD RESISTANCE TO VCC (f))
FIGURE 13 — COMMON MODE REJECTION versus FREQUENCY 120
l,Ok
10k
100k f, FREQUENCY (Hz)
MC33272
●
MC33274
1.OM
10M
10
100
l,Ok
10k
100k
1,OM
f, FREQUENCY (Hz)
MOTORO~ 5
FIGURE 14 — POSITIVE POWER SUPPLY REJECTION versus FREQUENCY
FIGURE 15 — NEGATIVE POWER SUPPLY REJECTION versus FREQUENCY
120
120
0
10
100
l,Ok
10k
100k
1,OM
f,FREQUENCY (Hz)
FIGURE 16 — OUTPUT SHORT CIRCUIT CURRENT versus TEMPERATURE
z
60
2 w
50
g
I I Vcc= +15V VEE= -15V vlD = tl.OV
o
2,0
4.0
6.0
8.0
10
12
14
16
18
20
Vcc,IVEE,SUPPLYVOLTAGE (V)
FIGURE 19 — GAIN BANDWIDTH
PRODUCT
versus TEMPERATURE
r tr
1,15
~ 1,1 ,,,
I
-55
– 25
VI
0
I
+25
t 50
V;r= +l:V
+75
TA,AMBIENTTEMPERATUREPC)
MOTOROLA 6
+100
I
+125
-55
– 25
0
+25
+50
+ 75
+ 100
+125
TA,AMBIENTTEMPERATURE(“C)
MC33272
●
MC33274
FIGURE 20 — VOLTAGE GAIN & PHASE versus
FREQUENCY
-25
80
+ 20
100
-15 = ~+lo z < -5.0 u u w o a ~ -50 > a> – 10
120
FREQUENCY
FIGURE 21 — GAIN AND PHASE versus
140 160 180 200 220
-15
240
-20
260
?5 -iook
?90 --” 100M
l,OM 10M f,FREQUENCY (Hz)
-1 ! 111
I
-251
!1!
..
I
,
!
!
,
+!.
~.;:,
FIGURE 22 — OPEN-LOOP VOLTAGE GAIN & PHASE versus FREQUENCY ~ 20
o
100 120 !40
+ 10 ~ \
_
Vcc= ‘VEE=
-15V
0
Vout=ov
_,o
t
\ -
+
I
I
160
.
\ ~ +15v-
2A
180 200
I
I \\
TA = 25°C
lB —-
,#o
~.
t
– 20
i
a~ 2.0
I
,,... -30
I I
0
1,0
!.1.,~,,!
111111
10
IIIH 1000
100
CL,OUTPUT LOAD CAPACITANCE (pF)
FIGURE 25 — PHASE MARGIN
g — z E
12
60
10
50
versus
TEMPERATURE
I CL=
40 2 z z
30
L
o 0 + z
CL = 500pF —
CL = 500pF_ —
4.0
—
__
300pF-
1
—
—
20
&
o Vcc= VEE=
aE 2.0
o~
-55
+15V –15VA
QE
I -25
+75 +25 +50 0 TA,AM81ENT TEMPERATURE (“C)
MC33272 o MC33274
+100
+125
Vcc= VEE=
10
-055
I -25
1
I
I
I
+25 +50 +75 0 TA,AM81ENT TEMPERATURE ICI
+15V –15V I
1
I
+100
+125
MOTOROLA 7
FIGURE 26 — PHASE MARGIN AND GAIN MARGIN DIFFERENTIAL SOURCE RESISTANCE 15 12
I
versus
FIGURE 27 — CHANNEL ..
I
SEPARATION
160
bU
FREQUENCY
versus
Ill I
n
I
I 111!11
I
I
I 111111
1
1 1
1 1
I
I
I 11111
Drive Channel
z = 9.0 g w m ~ 6,0 z a ‘. 3,0 aE o–
10
=E
n
10
10
100
l.Ok RT,DIFFERENTIAL SOURCERESISTANCE (f])
FIGURE 28 — TOTAL HARMONIC versus
100
10[
l,Ok
DISTORTION
FREQUENCY
10 k
100k
l,OM
10M
f, FREQUENCY (Hz]
FIGURE 31 — INPUT REFERRED NOISE CURRENT versus
~ c
,,:.,