Menu
Casa
Añadir documento
iniciar sesión
Crear una cuenta
PNG Transparente
Casa
Añadir documento
iniciar sesión
Crear una cuenta
PNG Transparente
Math252CalculusIII:TheJacobian by: javier
Math252CalculusIII
:TheJacobian by: javier. Page 2. SomeEasyTransformations u-substitutions. Page 3. u-substitutions. ∫ 5. 0 dx x = 3u. ∫ 15. 0. 3du. Page 4 ...
Descargar PDF
Imágenes PNG
479KB Größe
10 Downloads
93 vistas
comentario
Informe
Math 252 Calculus III: The Jacobian
by: javier
Some Easy Transformations u-substitutions
u-substitutions
∫
∫
5
dx 0
x = 3u
15
3du 0
u-v-substitutions
∫ 2∫
3
dx dy 0
0
x=3u y=2v
u-v-substitutions
∫ 2∫
3
dx dy 0
0
x=3u y=2v
∫ ∫ 6 du dv
u-v-substitutions
∫ 5∫
7
dx dy 0
0
x=4u y=3v
u-v-substitutions
∫ 5∫
7
dx dy 0
0
x=4u y=3v
∫ ∫
? du dv
Some Easy Transformations: u-v-substitutions
compute the warping factor of the area, dA: □ step 1 identify dx, dy, and dA □ step 2 identify the projection of dA, call it dS
1
□ step 3 compute the projected area dS 0 1 −1 0
0.2
0 0.4
0.6
0.8
1 −1
u-v-substitutions
∫ 1∫
1
dx dy 0
0
x=u+v y=u-v
u-v-substitutions
∫ 1∫
1
dx dy 0
0
x=u+v y=u-v
∫ ∫
? du dv
u-v-substitutions
∫ 1∫
1
dx dy 0
0
x=3u+2v y=5u-2v
u-v-substitutions
∫ 1∫
1
dx dy 0
0
x=3u+2v y=5u-2v
∫ ∫
? du dv
u-v-substitutions
∫ 1∫
1
dx dy 0
0
x = r cos(θ) y = r sin(θ)
u-v-substitutions
∫ 1∫
1
dx dy 0
0
x = r cos(θ) y = r sin(θ)
∫ ∫
? dr dθ
u-v-substitutions
∫ 1∫
1
dx dy 0
Jacobian in Action
0
x = r cos(θ) y = r sin(θ)
u-v-substitutions z r
y x
u-v-substitutions
∫ 1∫ 1∫
1
dz dx dy 0
0
0
x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ
u-v-substitutions
∫ 1∫ 1∫
1
dz dx dy 0
0
0
x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ
∫ ∫ ∫
? dρ dϕ dθ
u-v-substitutions
∫ 1∫ 1∫
1
dz dx dy 0
0
0
x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ
∫ ∫ ∫
cos (θ) sin (ϕ) ρ cos (ϕ) cos (θ) −ρ sin (ϕ) sin (θ) sin (ϕ) sin (θ) ρ cos (ϕ) sin (θ) ρ cos (θ) sin (ϕ) cos (ϕ) −ρ sin (ϕ) 0
? dρ dϕ dθ
u-v-substitutions ∫ 1∫ 1∫
1
dz dx dy 0
0
0
x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ
∫ ∫ ∫
? dρ dϕ dθ
cos (θ) sin (ϕ) ρ cos (ϕ) cos (θ) −ρ sin (ϕ) sin (θ) sin (ϕ) sin (θ) ρ cos (ϕ) sin (θ) ρ cos (θ) sin (ϕ) cos (ϕ) −ρ sin (ϕ) 0
( ) ρ2 cos (θ)2 sin (ϕ)3 +ρ2 sin (ϕ)3 sin (θ)2 + ρ2 cos (ϕ) cos (θ)2 sin (ϕ) + ρ2 cos (ϕ) sin (ϕ) sin (θ)2 cos (ϕ)
u-v-substitutions ∫ 1∫ 1∫
1
dz dx dy 0
0
0
x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ
∫ ∫ ∫
cos (θ) sin (ϕ) ρ cos (ϕ) cos (θ) −ρ sin (ϕ) sin (θ) sin (ϕ) sin (θ) ρ cos (ϕ) sin (θ) ρ cos (θ) sin (ϕ) cos (ϕ) −ρ sin (ϕ) 0 ρ2 sin (ϕ)
? dρ dϕ dθ
u-v-substitutions ∫ 1∫ 1∫
1
dz dx dy 0
0
0
x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ
∫ ∫ ∫
cos (θ) sin (ϕ) ρ cos (ϕ) cos (θ) −ρ sin (ϕ) sin (θ) sin (ϕ) sin (θ) ρ cos (ϕ) sin (θ) ρ cos (θ) sin (ϕ) cos (ϕ) −ρ sin (ϕ) 0 ρ2 sin (ϕ)
Jacobian in SAGE
? dρ dϕ dθ
Its EULER TIME
Its EULER TIME some sick timeless shtuff
Its EULER TIME some sick timeless shtuff
1+
1 1 1 1 1 + + + + + ... 22 32 42 52 62
some sick timeless shtuff
∫ 1∫ 0
1 0
1 dx dy 1 − xy
x=u+v y=u-v
∫ ∫
? du dv
recomendar documentos
no hay documentos
×
Informe "Math252CalculusIII:TheJacobian by: javier"
Tu nombre
Email
Reason
-Select Reason-
Pornográfico
Difamatorio
Ilegal / Ilícito
Spam
Otros Términos de Servicio de Violación
Presentar una queja por derechos de autor
Descripción
×
iniciar sesión
Email
Password
Erinnere dich an mich
contraseña olvidada?
iniciar sesión
Our partners will collect data and use cookies for ad personalization and measurement.
Learn how we and our ad partner Google, collect and use data
.
Agree & Close