Geomecánica para Reservorios y Producción - Aplicaciones para Incrementar la Producción y ubicación de nuevos pozos
Anna Paula Lougon Business Owner Geomechanics and Drilling
Outline 1.
Where does Geomechanics impact
2.
Advanced Integrated Geomechanics Workflows: 1D till 4D
3.
Geomechanics Applications - Drilling Integrity - Production - Field Integrity
4.
Summary
What is a Geomechanical Model?
Why a rock fails ? Because of changes in : 1. Stresses 2. Pressure (fluid flow) 3. Temperature 4. Time (creep) 5. Chemistry (fluid interaction) ... and modes of failures also depend on rock structure
Image: Schlumberger
Where does Geomechanics impact?
In reservoir and over- and under-burden, and not just in weak or compacting rocks. From appraisal to abandonment & from well to field applications.
Just drilling geomechanics approach? 3D – VISAGE / PETREL • Hazards identification at the Area • Can represent the structure • Complex Geology • Equilibrated Stress
Coupled 3D reservoir geomechanics technology which models life-of-field dynamic reservoir behavior and performance
t =0
4D 3D 2D
4D.. De Genaro et al. (2010). VISAGE
1D
t =10yr
What we do? Search (Seismic/ Basin)
Drill & Evaluate
Well-Test & Produce
Drill more wells & Produce
Maintain & Increase Production
Overburden Stress
Source: : need-media.smugmug.com
Elastic Properties (E, v) Rock Strength (UCS, FANG, TSTR)
Min Horizontal Stress Max Horizontal Stress P p Pore Pressure
N Source: Schlumberger
7
Well Centric Geomechanics (1D) Performed building a Mechanical Earth Model (MEM) Continuous description of mechanical properties and stresses along the well calibrated against measurements and observations Structure
Mechanical Stratigraphy Rock Mechanical Parameters Strength
Isotropic Elastic 10 0
Young’s Modulus Poisson’s Ratio
• Formation tops • Unconformities • Faults
Earth Stress & Pore Pressure
100
0
Friction Angle
70
1
20
UCS
400
Stress Direction S Stress
0
200
MPa
W
N
1.0
fault ?
• Rock Fabric • Mechanical support • Deformation Mechanisms
PR
E
UCS
F
Pp
Sh
SH
SV
Regional Trend
h E
Predict Wellbore Failure
Advance Integrated Geomechanics workflow
Seismic Processing
Fault Interpretation
Horizon Interpretation
Velocity Analysis
Prospect Quantification
Low Lithology Classification Frequency RP inversion Model
Seismic Inversion
Grid
Elastic Properties
Pore Pressure Prediction
Wavelet Estimation
Reservoir Properties
Stress/Strain Model
Mud Weight Cube
Well Trajectory optimization & Drilling Opt
Fracture System Drilling – Hydraulic Fracturing & completion planning
Petrophysics
Rock Physics
1D MEM
Depth Conversion
Geomechanics Applications
Drilling Integrity
Production Integrity
Field Integrity
•Wellbore Stability – right mud weight and system •Casing design and location •ROP and drill bit optimization •PAD location and attack angle
•Hydraulic frac design and optimization •Completion optimization •(Casing, Cement, Perforation, Screen) •Injectivity optimization (rate, cap rock) •Sand/solid production
•Pore volume collapse •Compaction/Subsidence •Fault and fracture shearing – sealing •Water breakthrough •Reservoir management/EOR/ 10
Drilling Integrity
11
Problemas Geo-mecánicos en Perforación
10 %
P
10 % 6%
10 % 10 %
12 %
16 %
13 %
6% 22 %
4%
Classical Wellbore Deformation Shear Failure
Minimum Stress
Hydraulic Fracture
Pmud
Maximum Stress 13
Mud Weight Window and Wellbore Damage
3D Safe Mud Weight Window
Wide
Safe mud weight window prediction before and during field development. – – – –
Pore Pressure gradient Breakout gradient Fracture gradient Breakdown gradient
Pre-production
Narrow
Analysis honours all complexity included in the 3D MEM. After Production
Wellbore Trajectory Optimization
Fault Shear Failure
Values closer to 0 (red) indicate areas of potential fault reactivation due to drilling.
Case 1 SPE-WVS-040: Field water depth 800-1050m: Pore Pressure Cube (g/cc)
VISAGE modeling had as main objective reducing uncertainty associated to stresses in the field, for this a geometrical analysis of the anticline and fault was performed for the determination of direction and stress gradients in the border of the study area.
Well-1DL Target 1 3034-3360m
N Azimuth Max Stress Orientation +/-200
First drilled well on the field *Structural Map for the field *Anisotropy profiles– DSI- not conclusive *Finite element modeling- VISAGE
Field Horizontal Stress Orientation Well-2DL *Structural Map for the field *Finite element modeling- VISAGE *Anisotropy profiles– Scanner dispersion plots *4 arm caliper (not conclusive) *Dual-OBMI
Well-2DL
Azimuth ~1100
Well-1
Well 1: *Structural Map: Azimuth +/- 300 *VISAGE Modeling: Azimuth +/-200 Well 2DL *VISAGE Modeling: *Sonic Scanner *CALIBAN Analysis
Azimuth +/- 105-1150 Azimuth +/- 1100 Not conclusive
Operational Window– Next deviated well in the South region of the field, feasibility of horizontal drilling? -With the new information was concluded that drilling highly deviated wells at the reservoir levels is feasible -Beginning at 60 degrees the safe drilling window becomes narrow, 0.7 g/cc (mud loss risk). 0.95-2.15G/CC
-It is recommended to use tools that confirm stress orientation in the South region of the field 0.95-2.15G/CC 0.95-2.15G/CC
Ejemplos de Aplicaciones 1D: Campo Oso
OBJECTIVOS: •
Reducir NPT
•
Perforar pozos retadores sin incidentes geo-mecánicos
Ejemplos de Aplicaciones 1D: Campo Oso
Ejemplos de Aplicaciones 1D: Campo Oso
Ejemplos de Aplicaciones 1D: Campo Oso Desviación
Azimuth
Pozo Oso A-47H Sección de Aterrizaje: NAPO MW 11 13ppg ECD 14.3ppg
Ejemplos de Aplicaciones 1D: Campo Oso
Ejemplos de Aplicaciones 1D: Campo Oso 2011 40 35 30 25 20 15 10 5 0
2012 34 2013 24.33
2013/14 2014
OSO PAD H
OSO I Tiempo Planeado x real OsoA-47H / OsoB-48H.
600
OsoA-49H, OsoB-52H, OsoB-54, OsoG-63H, OsoA-55H, OsoA-57H y OsoA-59H. 466 460 500 443 27.8OsoA-73, OsoA-75H, OsoA-77, 22.1 19 18.92 23.69 OsoH-113 hasta19.6 el OsoH-122. 16.17 14.69
408
467 397
OsoA-79, OsoA-92H y OsoA-93H Ajustes MEM. 356 400 OsoA-91, 350 328 331
Re-entry: OsoA-39R1, OsoA-35R1,
317
300
260
200 OsoA-37R1 100
2015 144
565
532 553
225
y OsoA-43R1. OsoA-150. y OsoI-04i 129 54
7 498 474 459.7 6 5 4 3 2
1 OsoIOsoI-05i, OsoH-123, OsoH-124, OsoG-100, OsoI-141, OsoH-125, OsoI-142, OsoI-143, OsoH-126, OsoG-101, OSO I 144 0 0 y OsoH-127.
OSO I 004 OSO I 005 OSO I 141 OSO I 142 OSO I 143 Tiempo Planeado
Tiempo Real
PAD I - OSO 6,000,000
6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4
5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 OSO I 004
OSO I 005 AFE
OSO I 141
OSO I 142
Real Cost
OSO I 143
Production Integrity
Stress rotation
Breakout prediction, Stress Rotation
Hydraulic Fracturing Modeling Near wellbore evaluation
Integrated evaluation stimulation design optimization
H
P q Natural Fracture Activity Hydraulic Fracture
?
h Cross?
Dilate?
unconventional fracture model
Natural fracture Dilate & Reactivate? Natural Fracture
30
Understanding Pad Scale Phenomena: Wolfcamp Shale, US
Problemas Geo-mecánicos en Producción Rocas no Consolidadas competentes
Rocas muy Reservorios poco consolidados: Oportunidad
Estado 1 Falla de la Roca
Estado 2 Transporte
Flujo de trabajo analítico para arenamiento
Análisis de intervalo Drawdown Crítico para tasas de depletación en intervalos definidos
Definir profundidad
Intervalo
Datos de entrada: MEM
•
Definir completación
•
Tasa de Depletación
•
Parámetros de arenamiento
Profundidad
Workflow
Análisis a profundidad específica Critical drawdown as a function of epletion for single depth
Ejemplos de Aplicaciones Arenamiento: Campo Apaika
Ejemplos de Aplicaciones Arenamiento: Campo Apaika
Ejemplos de Aplicaciones Arenamiento: Campo Apaika
Con este análisis, el drawdown crítico recomendado para el inicio de la producción del pozo fue de 1190 psi. (BHP=1100psi)
Production and Well Placement : Application of Field-scale
Sand Production Critical Drawdown Cube
Low Critical Drawdown High Critical Drawdown 37
Field integrity
38
Stress transfer mechanism wellbore h stress trajectories
h concentration
Far-field stresses
over-burden
reservoir
under-burden
depleted zone
h initial h
overburden
depth
reservoir
39 NK 5/29/2017
depleted h
underburden
Consequences: reduced h in the reservoir higher h above and below the reservoir
Coupled Reservoir Geomechanics Modeling
South Arne Field
Danish sector of the North Sea Operated by Hess Carbonate chalk reservoir
Result: Stress orientation before production
N
Initial State
Result: Stress orientation after production
N
Initial FinalState State
Field Example: Reservoir Compaction with Production Geomechanics Prediction
4-D Seismic Inversion
Compaction determined by two independent methods difference of ~5 cm
Prediction helped in development planning & seismic inversion confirmed prediction
Field Example: Reservoir Compaction with Production
Two fracture sets were
implemented Different fracture strike, spacing and conductivity
IntegratedExample Serviceof– Production DeepwaterWell GoMFailure – Predictive ModelRel- Predated Injector
Producer
Injector
Producer
Month 21
Month 0
Injector
Producer
Injector
Month 27
Producer
Month 38
What else the Shared Geomechanical Model can do to Minimize Operational Risk? Well planning & optimization
Stress modeling Well location and trajectory Wellbore stability and mud weights Casing design Completions
IOR/EOR and treatments
Frac treatments Thermal and pressure effects Water injector placement Flood directionality, sweep efficiency
Field development planning /Intervention planning Dynamic behaviour and depletion
Stress evolution Compaction and subsidence Permeability (including fractures) Sanding Fault activation, induced seismicity In-fill drilling Casing failure
Storage and waste disposal (NORM, cuttings reinjection, fresh & waste water) 4-D seismic – Seismic Reservoir Monitoring
47
Summary •
Rock is always under-stress & stress changes with time - production/injection
•
Geomechanics is critical to the optimal safety drilling side by the management of the reservoir for maximum productivity and recovery
•
Geomechanics can minimize operational risks
3D/4D Mechanical Earth models contribute to • Plan safe well trajectories Ensure completion integrity under production-induced compaction •