Geomecánica para Reservorios y Producción

29 may. 2017 - Ejemplos de Aplicaciones 1D: Campo Oso. OBJECTIVOS: •. Reducir NPT. •. Perforar pozos retadores sin incidentes geo-mecánicos ...
10MB Größe 37 Downloads 59 vistas
Geomecánica para Reservorios y Producción - Aplicaciones para Incrementar la Producción y ubicación de nuevos pozos

Anna Paula Lougon Business Owner Geomechanics and Drilling

Outline 1.

Where does Geomechanics impact

2.

Advanced Integrated Geomechanics Workflows: 1D till 4D

3.

Geomechanics Applications - Drilling Integrity - Production - Field Integrity

4.

Summary

What is a Geomechanical Model?

Why a rock fails ? Because of changes in : 1. Stresses 2. Pressure (fluid flow) 3. Temperature 4. Time (creep) 5. Chemistry (fluid interaction) ... and modes of failures also depend on rock structure

Image: Schlumberger

Where does Geomechanics impact?

In reservoir and over- and under-burden, and not just in weak or compacting rocks. From appraisal to abandonment & from well to field applications.

Just drilling geomechanics approach? 3D – VISAGE / PETREL • Hazards identification at the Area • Can represent the structure • Complex Geology • Equilibrated Stress

Coupled 3D reservoir geomechanics technology which models life-of-field dynamic reservoir behavior and performance

t =0

4D 3D 2D

4D.. De Genaro et al. (2010). VISAGE

1D

t =10yr

What we do? Search (Seismic/ Basin)

Drill & Evaluate

Well-Test & Produce

Drill more wells & Produce

Maintain & Increase Production

Overburden Stress

Source: : need-media.smugmug.com

Elastic Properties (E, v) Rock Strength (UCS, FANG, TSTR)

Min Horizontal Stress Max Horizontal Stress P p Pore Pressure

N Source: Schlumberger

7

Well Centric Geomechanics (1D) Performed building a Mechanical Earth Model (MEM) Continuous description of mechanical properties and stresses along the well calibrated against measurements and observations Structure

Mechanical Stratigraphy Rock Mechanical Parameters Strength

Isotropic Elastic 10 0

Young’s Modulus Poisson’s Ratio

• Formation tops • Unconformities • Faults

Earth Stress & Pore Pressure

100

0

Friction Angle

70

1

20

UCS

400

Stress Direction S Stress

0

200

MPa

W

N

1.0

fault ?

• Rock Fabric • Mechanical support • Deformation Mechanisms

PR

E

UCS

F

Pp

Sh

SH

SV

Regional Trend

h E

Predict Wellbore Failure

Advance Integrated Geomechanics workflow

Seismic Processing

Fault Interpretation

Horizon Interpretation

Velocity Analysis

Prospect Quantification

Low Lithology Classification Frequency RP inversion Model

Seismic Inversion

Grid

Elastic Properties

Pore Pressure Prediction

Wavelet Estimation

Reservoir Properties

Stress/Strain Model

Mud Weight Cube

Well Trajectory optimization & Drilling Opt

Fracture System Drilling – Hydraulic Fracturing & completion planning

Petrophysics

Rock Physics

1D MEM

Depth Conversion

Geomechanics Applications

Drilling Integrity

Production Integrity

Field Integrity

•Wellbore Stability – right mud weight and system •Casing design and location •ROP and drill bit optimization •PAD location and attack angle

•Hydraulic frac design and optimization •Completion optimization •(Casing, Cement, Perforation, Screen) •Injectivity optimization (rate, cap rock) •Sand/solid production

•Pore volume collapse •Compaction/Subsidence •Fault and fracture shearing – sealing •Water breakthrough •Reservoir management/EOR/ 10

Drilling Integrity

11

Problemas Geo-mecánicos en Perforación

10 %

P

10 % 6%

10 % 10 %

12 %

16 %

13 %

6% 22 %

4%

Classical Wellbore Deformation Shear Failure

Minimum Stress

Hydraulic Fracture

Pmud

Maximum Stress 13

Mud Weight Window and Wellbore Damage

3D Safe Mud Weight Window

Wide

Safe mud weight window prediction before and during field development. – – – –

Pore Pressure gradient Breakout gradient Fracture gradient Breakdown gradient

Pre-production

Narrow

Analysis honours all complexity included in the 3D MEM. After Production

Wellbore Trajectory Optimization

Fault Shear Failure

Values closer to 0 (red) indicate areas of potential fault reactivation due to drilling.

 Case 1 SPE-WVS-040: Field water depth 800-1050m: Pore Pressure Cube (g/cc)

VISAGE modeling had as main objective reducing uncertainty associated to stresses in the field, for this a geometrical analysis of the anticline and fault was performed for the determination of direction and stress gradients in the border of the study area.

Well-1DL Target 1 3034-3360m

N Azimuth Max Stress Orientation +/-200

First drilled well on the field *Structural Map for the field *Anisotropy profiles– DSI- not conclusive *Finite element modeling- VISAGE

Field Horizontal Stress Orientation Well-2DL *Structural Map for the field *Finite element modeling- VISAGE *Anisotropy profiles– Scanner dispersion plots *4 arm caliper (not conclusive) *Dual-OBMI

Well-2DL

Azimuth ~1100

Well-1

Well 1: *Structural Map: Azimuth +/- 300 *VISAGE Modeling: Azimuth +/-200 Well 2DL *VISAGE Modeling: *Sonic Scanner *CALIBAN Analysis

Azimuth +/- 105-1150 Azimuth +/- 1100 Not conclusive

Operational Window– Next deviated well in the South region of the field, feasibility of horizontal drilling? -With the new information was concluded that drilling highly deviated wells at the reservoir levels is feasible -Beginning at 60 degrees the safe drilling window becomes narrow, 0.7 g/cc (mud loss risk). 0.95-2.15G/CC

-It is recommended to use tools that confirm stress orientation in the South region of the field 0.95-2.15G/CC 0.95-2.15G/CC

Ejemplos de Aplicaciones 1D: Campo Oso

OBJECTIVOS: •

Reducir NPT



Perforar pozos retadores sin incidentes geo-mecánicos

Ejemplos de Aplicaciones 1D: Campo Oso

Ejemplos de Aplicaciones 1D: Campo Oso

Ejemplos de Aplicaciones 1D: Campo Oso Desviación

Azimuth

Pozo Oso A-47H Sección de Aterrizaje: NAPO MW 11  13ppg  ECD 14.3ppg

Ejemplos de Aplicaciones 1D: Campo Oso

Ejemplos de Aplicaciones 1D: Campo Oso 2011 40 35 30 25 20 15 10 5 0

2012 34 2013 24.33

2013/14 2014

OSO PAD H

OSO I Tiempo Planeado x real OsoA-47H / OsoB-48H.

600

OsoA-49H, OsoB-52H, OsoB-54, OsoG-63H, OsoA-55H, OsoA-57H y OsoA-59H. 466 460 500 443 27.8OsoA-73, OsoA-75H, OsoA-77, 22.1 19 18.92 23.69 OsoH-113 hasta19.6 el OsoH-122. 16.17 14.69

408

467 397

OsoA-79, OsoA-92H y OsoA-93H  Ajustes MEM. 356 400 OsoA-91, 350 328 331

Re-entry: OsoA-39R1, OsoA-35R1,

317

300

260

200 OsoA-37R1 100

2015 144

565

532 553

225

y OsoA-43R1. OsoA-150. y OsoI-04i 129 54

7 498 474 459.7 6 5 4 3 2

1 OsoIOsoI-05i, OsoH-123, OsoH-124, OsoG-100, OsoI-141, OsoH-125, OsoI-142, OsoI-143, OsoH-126, OsoG-101, OSO I 144 0 0 y OsoH-127.

OSO I 004 OSO I 005 OSO I 141 OSO I 142 OSO I 143 Tiempo Planeado

Tiempo Real

PAD I - OSO 6,000,000

6 5.8 5.6 5.4 5.2 5 4.8 4.6 4.4

5,000,000 4,000,000 3,000,000 2,000,000 1,000,000 OSO I 004

OSO I 005 AFE

OSO I 141

OSO I 142

Real Cost

OSO I 143

Production Integrity

Stress rotation

Breakout prediction, Stress Rotation

Hydraulic Fracturing Modeling Near wellbore evaluation

Integrated evaluation stimulation design optimization

H

P q Natural Fracture Activity Hydraulic Fracture

?

h Cross?

Dilate?

unconventional fracture model

Natural fracture Dilate & Reactivate? Natural Fracture

30

Understanding Pad Scale Phenomena: Wolfcamp Shale, US

Problemas Geo-mecánicos en Producción Rocas no Consolidadas competentes

Rocas muy Reservorios poco consolidados: Oportunidad

Estado 1 Falla de la Roca

Estado 2 Transporte

Flujo de trabajo analítico para arenamiento

Análisis de intervalo Drawdown Crítico para tasas de depletación en intervalos definidos

Definir profundidad

Intervalo

Datos de entrada: MEM



Definir completación



Tasa de Depletación



Parámetros de arenamiento

Profundidad

Workflow

Análisis a profundidad específica Critical drawdown as a function of epletion for single depth

Ejemplos de Aplicaciones Arenamiento: Campo Apaika

Ejemplos de Aplicaciones Arenamiento: Campo Apaika

Ejemplos de Aplicaciones Arenamiento: Campo Apaika

Con este análisis, el drawdown crítico recomendado para el inicio de la producción del pozo fue de 1190 psi. (BHP=1100psi)

Production and Well Placement : Application of Field-scale

Sand Production Critical Drawdown Cube

Low Critical Drawdown High Critical Drawdown 37

Field integrity

38

Stress transfer mechanism wellbore h stress trajectories

h concentration

Far-field stresses

over-burden

reservoir

under-burden

depleted zone

h initial h

overburden

depth

reservoir

39 NK 5/29/2017

depleted h

underburden

Consequences: reduced h in the reservoir higher h above and below the reservoir

Coupled Reservoir Geomechanics Modeling

South Arne Field

Danish sector of the North Sea Operated by Hess Carbonate chalk reservoir

Result: Stress orientation before production

N

Initial State

Result: Stress orientation after production

N

Initial FinalState State

Field Example: Reservoir Compaction with Production Geomechanics Prediction

4-D Seismic Inversion



Compaction determined by two independent methods  difference of ~5 cm



Prediction helped in development planning & seismic inversion confirmed prediction

Field Example: Reservoir Compaction with Production

 Two fracture sets were

implemented  Different fracture strike, spacing and conductivity

IntegratedExample Serviceof– Production DeepwaterWell GoMFailure – Predictive ModelRel- Predated Injector

Producer

Injector

Producer

Month 21

Month 0

Injector

Producer

Injector

Month 27

Producer

Month 38

What else the Shared Geomechanical Model can do to Minimize Operational Risk? Well planning & optimization     

Stress modeling Well location and trajectory Wellbore stability and mud weights Casing design Completions

IOR/EOR and treatments    

Frac treatments Thermal and pressure effects Water injector placement Flood directionality, sweep efficiency

Field development planning /Intervention planning Dynamic behaviour and depletion       

Stress evolution Compaction and subsidence Permeability (including fractures) Sanding Fault activation, induced seismicity In-fill drilling Casing failure

Storage and waste disposal (NORM, cuttings reinjection, fresh & waste water) 4-D seismic – Seismic Reservoir Monitoring

47

Summary •

Rock is always under-stress & stress changes with time - production/injection



Geomechanics is critical to the optimal safety drilling side by the management of the reservoir for maximum productivity and recovery



Geomechanics can minimize operational risks

3D/4D Mechanical Earth models contribute to • Plan safe well trajectories Ensure completion integrity under production-induced compaction •