Diapositiva 1 - CNO

S.Henry, O. Despouys, R.Adapa, “Influence of Embedded HVDC Transmission on System Security and AC Network Performance” , CIGRE C4/B4/C1.604.
744KB Größe 1 Downloads 1 vistas
AJUSTE DE CONTROLADORES EN ESTACIONES DE CONVERSIÓN HVDC TIPO VSC Juan Sebastián Laverde Mario Alberto Ríos

Contenido

2  Presentación del problema

 Estrategia de Control  Sintonización de Controladores en estaciones de conversión  Análisis Dinámico

 Limitaciones y Alternativas de Solución  Conclusiones y Trabajos Futuros

Presentación del Problema

3

• Emplear una metodología para ajustar los parámetros de los controladores PI en las estaciones de conversión. Bipolar VSC-HVDC ~ ~ = = ~

GEN 5

=

=

~ L 10-11 A

1

5

6

7 L 7-8 A

8 L 8-9 A

L 7-8 B

L 8-9 B

9

GEN 1

3

11

10

GEN 3

L 10-11 B

2

GEN 2

C7

L7

L9

AC System 2 Weak System

C9

4

GEN 4

S.Henry, O. Despouys, R.Adapa, “Influence of Embedded HVDC Transmission on System Security and AC Network Performance” , CIGRE C4/B4/C1.604 Brochure 536, April 2013.

Estrategia de Control Vectorial

4

• Permite Controlar la potencia activa y reactiva de manera independiente a través de un control interno de corriente. • Utiliza el marco de referencia dq para representar cantidades trifásicas como un vector constante en estado estable.

 Transformación de coordenadas trifásicas referencia 𝛼 − 𝛽  Transformación de coordenadas estacionario de referencia dq

sistema a marco

de de

sistema de 𝛼 − 𝛽 a marco

S.Henry, O. Despouys, R.Adapa, “Influence of Embedded HVDC Transmission on System Security and AC Network Performance” , CIGRE C4/B4/C1.604 Brochure 536, April 2013.

Estrategia de Control Vectorial

5

~

PQ Calculator

ABC to dq

𝑉𝑐𝑎 𝑉𝑐𝑏 dq to 𝑉𝑐𝑐 ABC

𝑈𝑑𝑐

Voltage Source Converter (VSC)

𝑉𝑠

𝑃 𝑄 Active Power Controller

𝑖𝑠𝑑𝑞

𝑃𝑟𝑒𝑓

PLL 𝜃

𝑉𝑐𝑑𝑟𝑒𝑓 𝑉𝑐𝑞𝑟𝑒𝑓

𝑖𝑑𝑟𝑒𝑓 Current Controller

Direct Voltage Controller

𝑈𝑑𝑐𝑟𝑒𝑓

𝑖𝑞𝑟𝑒𝑓 Reactive Power Controller

AC Voltage Controller

𝑄𝑟𝑒𝑓

𝑉𝑎𝑐𝑟𝑒𝑓

C. Bajracharya, “ Control of VSC-HVDC for wind power.” Master’s Thesis, Norwegian University of Science and Technology, Norway, 2008.

6

Control de Corriente interno Control DC o Control de potencia activa

Control AC o Control de potencia reactiva

C. Bajracharya, “ Control of VSC-HVDC for wind power.” Master’s Thesis, Norwegian University of Science and Technology, Norway, 2008.

Sintonización controlador PI

7 Estrategia control: IMC (Internal Mode Control)

𝐹 𝑠 = 𝐼−𝐶 𝑠 𝐺 𝑠

Etapas: 1. Factorizar el proceso 𝐺 𝑠 = 𝐺𝐴 𝑠 ∙ 𝐺𝑀 𝑠 2. Especificar controlador de la forma 𝐶 = 𝐺

1 𝑀

−1

C(s)

𝛼

𝑠

∙ 𝑓, 𝑑𝑜𝑛𝑑𝑒 𝑓 = 𝑠+𝛼

3. Aproximar función de transferencia PI a partir de la estructura obtenida con IMC O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

Sintonización controlador PI

8 Estrategia control: IMC (Internal Mode Control)

Ecuaciones de voltaje de eje de cuadratura y directo 𝑑𝑖𝑑 𝑡 → vd s = R + sLd Id s − 𝜔𝐿𝑞 𝐼𝑞 𝑠 𝑑𝑡 𝑑𝑖𝑞 (𝑡) 𝑣𝑞 = 𝑅𝑖𝑞 + 𝜔𝐿𝑑 𝑖𝑑 𝑡 + 𝐿𝑞 → vq s = R + sLq Iq s − 𝜔𝐿𝑑 𝐼𝑑 𝑠 𝑑𝑡 𝑣𝑑 = 𝑅𝑖𝑑 − 𝜔𝐿𝑞 𝑖𝑞 𝑡 + 𝐿𝑑

Definiendo las siguientes entradas y salidas

𝑈 𝑆 =

𝑣𝑑 (𝑠) , 𝑣𝑞 (𝑠) 1 𝑅 + 𝑠𝐿𝑑 𝐺 𝑆 = 1 𝜔𝐿𝑑

Y 𝑆 =

𝐼𝑑 (𝑠) 𝐼𝑞 (𝑠)

1 𝜔𝐿𝑞 = 𝐺𝑀 𝑠 1 𝑅 + 𝑠𝐿𝑞



O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

Sintonización controlador PI

9 Estrategia control: IMC (Internal Mode Control) 𝐶=

1 𝐺𝑀

𝛼 ∙ 𝑠 𝛼+𝑠

𝛼 C s = 𝐼− 𝛼+𝑠

−1

𝛼 𝛼 1 = ∙ 𝑠 𝐺𝑀 𝑠 𝐺𝑀 𝑠 𝛼 + 𝑠 Remplazando la matriz de transferencia obtenida anteriormente →𝐹 𝑠 = 𝐼−𝐶 𝑠 𝐺 𝑠

−1

𝛼 𝑅 + 𝑠𝐿𝑑 𝐹(𝑠) = 𝑠 𝜔𝐿𝑑

𝐿𝑑 =𝛼

𝑅 1+ 𝑠𝐿𝑑 𝜔𝐿𝑑 𝑠

1



−𝜔𝐿𝑞 𝑅 + 𝑠𝐿𝑞

𝜔𝐿𝑞 − 𝑠 𝑅 𝐿𝑞 1 + 𝑠𝐿𝑞

O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

Sintonización controlador PI

10 Estrategia control: IMC (Internal Mode Control) 𝐿𝑑

𝐹(𝑠) = 𝛼

𝑅 1+ 𝑠𝐿𝑑 𝜔𝐿𝑑 𝑠

𝜔𝐿𝑞 − 𝑠 𝑅 𝐿𝑞 1 + 𝑠𝐿𝑑

𝑘𝑑 1 + 𝐹𝑃𝐼(𝑠) =

0

𝒌𝒑𝒅 = 𝜶𝑳𝒅 , 𝑻𝒊𝒅 =

𝑳𝒅 , 𝑹

1 𝑠𝑇𝑖𝑑

0

𝑘𝑞 1 +

1 𝑠𝑇𝑖𝑞

𝒌𝒑𝒒 = 𝜶𝑳𝒒 𝑻𝒊𝒒 =

𝑳𝒒 𝑹

Estrategia control voltaje DC: IMC (Internal Mode Control) 𝒌𝒑𝒅𝒄 = 𝜶𝒅𝒄 𝑪,

𝒌𝒊𝒅𝒄

𝜶𝟐𝒅𝒄 𝑪 = 𝟐

O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

Sintonización controlador PI

11 Parámetro Frecuencia de Switcheo [Hz] α [rad/s] αdc [rad/s] L [mH] R [Ω] C[µF]

Control de corriente interno, Potencia activa y reactiva Control de voltaje DC y AC

Valor 1320 816 81,6 50 1,57 23,44 𝒌𝒑 = 𝟎, 𝟑𝟔,

𝑻𝒊 = 𝟎, 𝟎𝟑𝟏𝟖,

𝒌𝒊 = 𝟏𝟏, 𝟑

𝒌𝒑 = 𝟎, 𝟗𝟖,

𝑻𝒊 = 𝟎, 𝟐𝟕𝟕𝟔,

𝒌𝒊 = 𝟑, 𝟓𝟑

O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

Resultados

12 Apertura de línea 10-11

O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

Limitaciones

13 No garantiza estabilidad ante una condición crítica de operación

Apertura línea de interconexión

O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

14

Alternativas de solución

Control Suplementario en la estación de conversión POD

O. Lennerhag, V. Traff, “ Modelling of VSC-HVDC for Slow Dynamic Studies.” Master’s Thesis, Chalmers University of Techonology, Gothenburg, Sweden, 2013. L. Harnefors, H.Nee, “Model-Based Current Control of AC Machines Using the Internal Model Control Method” IEEE Transactions on Industry Applications, Vol. 34, No.1, January 1998

15

Conclusiones y trabajo futuro

• La estrategia de control IMC permite garantizar la estabilidad del sistema para una contingencia menor. • Para garantizar la estabilidad del sistema en una condición crítica de operación se debe implementar un control suplementario en la estación de conversión. • En trabajos futuros se planea utilizar otra estrategia de control para comparar el desempeño del controlador.

Referencias

16

[1] P. Kundur, Power System Stability and Control, New York: McGraw-Hill, 1994. [2] S.Henry, O. Despouys, R.Adapa, “Influence of Embedded HVDC Transmission on System Security and AC Network [3] [4] [5]

Performance” , CIGRE C4/B4/C1.604 Brochure 536, April 2013. O. LENNERHAG, Modelling of VSC-HVDC for Slow Dynamic, Sweden: Chalmers University of Technology, 2013. C. Bajracharya, “ Control of VSC-HVDC for wind power.” Master’s Thesis, Norwegian University of Science and Technology, Norway, 2008. L. Harnefors y H.-P. Nee, «Model-Based Current Control of AC Machines Using the Internal Model Control Method,» IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,, vol. 34, p. 9, 1998. J. Chow, Power System Coherency and Power System, New York: Springer, 2013.

[6] [7] Mohapatra. B.: ‘Dynamic Stability Improvement of Power System with VSC-HVDC Transmission’. Master’s thesis, National Institute of Technology Rourkela, 2014. [8] Chandra. B.: ‘Control of VSC-HVDC for wind power’. Master’s thesis, Norwegian University of Science and Technology, 2013

[9] Mohapatra. B.: ‘Dynamic Stability Improvement of Power System with VSC-HVDC Transmission’. Master’s thesis, National Institute of Technology Rourkela, 2014.