An E-based mixed formulation for a time dependent eddy current problem ∗ Ramiro Acevedo
†
Salim Meddahi
‡
Rodolfo Rodr´ıguez
§
Abstract In this work, we analyze a mixed formulation for a time-dependent eddy current problem formulated in terms of the electric field E. We prove that the problem has a well posed weak formulation. We also show that this formulation admits a well posed saddle point structure when the constraints satisfied by the electric field in the dielectric material is handled by means of a Lagrange multiplier. We use N´ed´elec’s edge elements and standard nodal finite elements to define a semi-discrete Galerkin scheme for this problem. Furthermore, we introduce the corresponding backward-Euler fully-discrete formulation and provide error estimates.
References [1] A. Alonso and A. Valli, A domain decomposition approach for heterogeneous timeharmonic Maxwell equations. Computer methods in applied mechanics and engineering, vol 143, pp 97-112, (1997). [2] A. Alonso and A. Valli, An optimal decomposition preconditioner for low-frequency time-harmonic Maxwell equations. Mathematics of Computation, vol. 68, pp. 607-631, (1999). ´ de ´lec, A justification of the eddy currents model [3] H. Ammari, A. Buffa and J.-C. Ne for the Maxwell equations. SIAM Journal of Applied Mathematics, vol. 60, pp. 18051823, (2000). [4] F. Bachinger, Multigrid solvers for 3D multiharmonic nonlinear magnetic field computations. Diploma thesis, Institute for Computational Mathematics, Johannes Kepler University Linz, (2003). ∗ Trabajo a ser presentado en la Sesi´ on Invitada de An´ alisis Num´ erico del XVII Congreso de Matem´ atica Capricornio, a realizarse en la Universidad de Atacama, Copiap´ o, Chile, desde el 1 al 4 de Agosto de 2007. Esta investigaci´ on fue financiada parcialmente por MECESUP UCO0406 (Chile). † Departamento de Ingenier´ıa Matem´ atica, Universidad de Concepci´ on, Casilla 160-C, Chile. Departamento de matem´ aticas, Universidad del Cauca, Colombia. email:
[email protected] ‡ Departamento de Matem´ aticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Espa˜ na. email:
[email protected] § 2 G IMA, Departamento de Ingenier´ıa Matem´ atica, Universidad de Concepci´ on, Casilla 160-C, Chile. email:
[email protected]
1
[5] P. Ciarlet, Jr and J. Zou, Fully discrete finite element approaches for timedependent Maxwell’s equations. Numerische Mathematik, vol. 82, pp. 193-219 (1999). [6] V. Dominguez and F. J. Sayas, Stability of discrete liftings. C. R. Acad. Sci. Paris, Ser. I 337, pp. 805-808, (2003) [7] R. Hiptmair, Finite Elements in Computational Electromagnetism. Acta Numerica, vol. 11, pp. 237-339 (2002). [8] T. Kang and K. I. Kim, A−φ approaches of an eddy current problem based on solving certain potentials. Computer and Mathematics with applications, vol. 51, pp. 769-782, (2006). [9] S. Meddahi and V. Selgas. An H-based FEM-BEM formulation for a time dependent eddy current problem. To appear in Appl. Numer. Math. Available via the DOI link: http://dx.doi.org/10.1016/j.apnum.2007.04.002 ´ de ´lec, Mixed Finite Elements in R3 . Numerische Mathematik, vol. 35, pp. [10] J. C. Ne 315-341 (1980). [11] E. Zeidler, Nonlinear Functional Analysis and its Aplications II/A. Springer-Verlag, 1990.
2