3 Hoek-Brown roca intacta - SRK Consulting

para roca intacta. Dr. Alejo O. Sfriso. Universidad de Buenos Aires materias.fi.uba.ar/6408 [email protected]. SRK Consulting (Argentina) latam.srk.com.
729KB Größe 64 Downloads 95 vistas
El criterio de Hoek-Brown para roca intacta

Dr. Alejo O. Sfriso Universidad de Buenos Aires SRK Consulting (Argentina) AOSA

materias.fi.uba.ar/6408 latam.srk.com www.aosa.com.ar

[email protected] [email protected] [email protected]

El criterio de Hoek-Brown Criterio de Hoek-Brown roca intacta

𝜏

Criterio de fluencia al corte en tensiones principales 𝜎' = 𝜎) − 𝜎"#

𝜎) 𝑠−𝑚 𝜎"#

+

Parámetros: 𝜎"# , 𝑚, 𝑠, 𝑎 Genera una superficie de fluencia similar a Mohr-Coulomb con generatriz curva

2

𝑐/

𝜎𝜎"

Criterio de Hoek-Brown roca intacta

Significado de los parámetros para roca intacta (𝜎"# , 𝑚# , 𝑠, 𝑎) Compresión simple (𝜎) = 0): 𝜎' = −𝝈𝒄𝒊 0 + −𝜎"# = 0 − 𝜎"# 𝑠 − 𝑚# →𝒔=𝟏 𝜎"# Tracción triaxial (𝜎' = 𝜎) = 𝑐/ ) 𝑐/ + 𝝈𝒄𝒊 𝑐/ = 𝑐/ − 𝜎"# 1 − 𝑚# → 𝒎𝒊 = 𝜎"# 𝒄𝒑 Compresión triaxial: 𝑎 ajusta la curvatura en el plano 𝜏 − 𝜎 𝒂 = 𝟎. 𝟓 para roca intacta 𝜎' = 𝜎) − 𝜎"# 3

𝜎) 1− 𝑐/

𝜏

Roca intacta

' >

𝑐/

𝜎-

𝝈𝒄𝒊

Criterio de Hoek-Brown roca intacta

Resistencia a compresión simple 𝝈𝒄𝒊

4

Debe medirse en ensayos de compresión simple o triaxiales Term

σci [MPa] > 250

Field estimate of strength

Examples

Can only be chipped with a geological hammer

Fresh basalt, chert, diabase, gneiss, granite,Quartzite

R6

Extrem. strong

R5

Very strong

100 250

Requires many blows of a geological hammer to fracture it

Amphibolite, sandstone, basalt, gabbro, gneiss, granodiorite, limestone, marble, rhyolite, tuff

R4

Strong

50 100

Requires more than one blow of a geological hammer to fracture it

Limestone, marble, phyllite, sandstone, schist, shale

R3

Med. strong

25 50

Cannot be scraped or peeled with a pocket knife Can be fractured with a single blow from a geological hammer

Claystone, coal, concrete, schist, shale, siltstone

R2

Weak

5.00 25.0

Can be peeled with a pocket knife with difficulty Shallow indentation made by firm blow with point of a geological hammer

Chalk, rocksalt, potash

R1

Very weak

1.00 5.00

Crumbles under firm blows with point of a geological hammer Can be peeled by a pocket knife

Highly weathered or altered rock

R0

Extrem. weak

0.25 1.00

Indented by thumbnail

Stiff fault gouge

Criterio de Hoek-Brown roca intacta

Parámetro 𝒎𝒊

5

Tracción isotrópica 𝜎"# 𝑚# = 𝑐/ Tracción simple 𝜎"# 𝜎? 𝑚# = − 𝜎? 𝜎"# El vértice es (casi) tracción simple 𝜎? 𝑐/ = 𝜎? 1− 𝜎"#

>



𝜎? ≅ 0.99

Calibración de 𝒎𝒊 Principal Stresses (IGR)

Principal Stresses (IBR)

160

160

140

140

220

200

180

120

120 160

100

140

80

Major principal stress (MPa)

100

Major principal stress (MPa)

Major principal stress (MPa)

Criterio de Hoek-Brown roca intacta

Principal Stresses (ILA)

80

60

60

40

40

120

100

80

60

40 20

20

Serie S1 vs S3 Env. mejor ajuste

Env. mejor ajuste

Env. ajuste restringido

Env. ajuste restringido

20

0

20 Minor principal stress (MPa)

40

Env. mejor ajuste Env. ajuste restringido

0

0

6

Series S1 vs S3 (IGR)

Serie S1 vs S3 (IBR)

0 0

20 Minor principal stress (MPa)

40

0

20

40

Minor principal stress (MPa)

60

Criterio de Hoek-Brown roca intacta

Críticas “académicas” al criterio de Hoek-Brown • Un mismo criterio para falla al corte y a tracción • Plano de ruptura oblicuo en el ensayo de tracción simple (indetectable en la práctica, error 0.5%|1.0%) 𝜏 • Fuerte curvatura deviatórica cerca de vértice 𝜋 𝜃= 6

Mohr-Coulomb Hoek-Brown lejos de 𝑐/ cerca de 𝑐/ 𝜋 𝜃=− 6

7

𝜎𝑐/ 𝜎?

ength s3 ¼ "7.75 MPa. In other has no provision for predicting 8, and highlighted by the “Ten-

fracture criterion

Hoek-Brown complementado con falla por tracción simple

t the Griffith failure criterion, could be generalized in terms of e strength sc =jst j as follows (a Appendix):

Criterio de Hoek-Brown roca intacta

occurs when s3 ¼ st; occurs when

Hoek (2014) propuso un “tension cut-off” • Mecanismos de corte y tracción independientes • Resuelve el problema de la “falla oblicua”

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi " # 2 " 4 s23 þ Ast s3 þ 2ABs2t

2

possible to arrive at a preliminary relationship between the Fairhurst tension cutoff (defined by sc =jst j) and the HoekeBrown parameter mi plotted in Fig. 10. While more work remains to be done on this topic, particularly more tests of the type carried out by Ramsey and Chester (2004) and Bobich (2005), the authors suggest that Fig. 10 provides a useful practical tool for estimating a tensile cutoff for the HoekeBrown criterion. Examination of Table 1 shows that, for low mi values, the Hoeke Brown criterion over-estimates the tensile strength compared with the Fairhurst criterion. However, for mi > 25 the HoekeBrown criterion under-estimates the tensile strength by an amount that is generally small enough to be ignored for most engineering applications. Hoek (1965) assembled a significant quantity of laboratory triaxial test data for a variety of rock types and concrete and these results (peak strength values) are plotted in a dimensionless form in Fig. 11. It can be seen that individual data sets plot on parabolic curves and that a family of such curves, covering all of the shear data collected, can be generated for different values of the Hoeke Brown constant mi. The constant mi is an indicator of the brittleness of the rock with weaker and more ductile rocks having low mi values while stronger and more brittle rocks have high mi values. A few data points for s3 < 0 are included in Fig. 11 and these are dealt with adequately by the tension cutoff discussed above.

(7)

Hoek (2002) Fairhust (1964)

𝜎𝜎?

8

𝜏

(Hoek 2014)

and triaxial compression tests by Ramsey Fig. 9. Combined plot of HoekeBrown and Fairhurst failure criteria with tension cutoff.