3 Anisotropia en macizos rocosos - SRK Consulting

Anisótropía elástica / elastoplástica. • Juntas difusas. • Interfases distribuidas. • Interfases explícitas. • Mesomecánica (SRM). Modelos de contacto/bloques.
3MB Größe 48 Downloads 107 vistas
Modelización de la anisotropía de los macizos rocosos

Dr. Alejo O. Sfriso Universidad de Buenos Aires SRK Consulting (Argentina) AOSA

materias.fi.uba.ar/6408 latam.srk.com www.aosa.com.ar

[email protected] [email protected] [email protected]

Modelización de anisotropía en macizos rocosos

Isotropía, anisotropía, ortotropía

2

• Isotropía: mismas propiedades en todas las direcciones (rocas ígneas intactas) • Ortotropía: dos o tres ejes ortogonales de simetría (algunas rocas sedimentarias) • Anisotropía: propiedades diferentes en diferentes direcciones

Axial Radial Circunferencial es.wikipedia.org/wiki/ Material_ortótropo

Aliviadero Caracoles

1

60

Z. Gao, J. Zhao / Computers and Geotechnics 41 (2012) 57–69

z

(a)

The following evolution law for H i σ2

θ

Estrategias de modelización de anisotropía θ = 240 σx

dH ¼ hdLir H ¼ hdLi

σ3

θ = 60

θ = 300

Modelización de anisotropía en macizos rocosos

σ1

θ =0

y x

3

3.2. Hardening law

σz

I

σ2

I

II

σ1

II σ3

III

III σ3

θ = 180

θ = 120 σy

σ1 σ2

Medio continuo (b) • Anisótropía elástica / elastoplástica • Juntas difusas • Interfases distribuidas • Interfases explícitas • Mesomecánica (SRM) Modelos de contacto/bloques • UDEC/3DEC (c) • PFC • Slope model • SRK: Frack_Rock (Gibson)

Anisótropo

Isótropo (Gao & Zhao 2012)

where rH denotes the evolution directio than or equal to zero; dL is a loading Macauley bracket with hxi = 0 when x ch is a positive constant. Following Li an et al. [13], we introduce the following f for the effect of fabric anisotropy on th

f ¼ exp½#kðA þ 1Þ'

where k is a positive model parameter. E is a decreasing function of A. This is observations that, under otherwise id sponse of a soil becomes softer as the m tion deviates away from the direction with this change) [42,59]. Note that in compression with the axis of deposit compression direction, A = #1, such th of this shear mode makes it suitable to model calibration, which will be discus Experimental observations [1,58] sh is gradually weakened due to the deve tion, which leads to significant degrada ing the post peak stage. In the prese relation between the rate of de-bondin strain increment is assumed,

dr0 ¼ hdLir 0 where

r0 ¼

(Gibson 2016)

Fig. 1. (a) Definition of the angle h and partition of the deviatoric plane under the true triaxial test condition (after [46]); (b) the yield surface in the threedimensional space and (c) the yield loci in the deviatoric plane.

Modelización de anisotropía en macizos rocosos

Gch f ðM f # HÞ Hpr

tests if both the stress direction and the fabric orientation are set to align in the same fixed coordinate, such as the cases shown in Fig. 1a, the yield surface can be plotted as shown in Fig. 1b (the yield surfaces do not cross the origin of the coordinate system due to the existence of bonding) and Fig. 1c (yield loci in the deviatoric plane with different values of hardening parameter). The isotropic failure surface is shown in the deviatoric plane in comparison with the anisotropic one. Note that in Fig. 1a we denote the angle between the current stress state with the vertical stress axes in the deviatoric plane by h, and the deviatoric plane is partitioned into three zones as shown in Fig. 1a. The same convention will be followed in the subsequent sections.

Fluencia anisotrópica dentro de la mecánica del continuo

Los modelos de plasticidad simples son isotrópicos (p.ej. Mohr-Coulomb o Hoek-Brown)

(

#mðH=M f Þ2000 r0 0

for for

r0 > 0 r0 6 0

where r0 denotes the current triaxial t rial and m is a non-negative model para law ensures that r0 is always less than o cess of de-bonding proceeds steadily w reaches zero. It is assumed that elastic de-bonding in this evolution law. Since ial tensile strength r0i is determined state of cemented sand (see the case shown in Fig. 2), the term (H/Mf)2000 is u rate to become very small before the p 3.3. Dilatancy and flow rule

Dilatancy relation is the cornerstone sand. To incorporate the effect of bon into the dilatancy of sand, we propose t tion based on the work by Li and Dafa

depv d1 R ðM p dC dF D ¼ qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ¼ p p 2=3deij deij expð hdLiÞ

where depv is the plastic volumet (¼ depij #depv dij =3) is the plastic deviato positive model parameter; Mp is the pha tio measured in conventional triaxial c ded samples. The role of the denomina the volume change, especially when the sample is sheared to the critical sta deviatoric strain will not be limited. As

N T

Las discontinuidades agregan mecanismos adicionales de deformación anisotrópica (modelos de juntas difusas) N T

4

2

Incremental displacements γ= 0, c=1, φ=0 E1 = E2

γ= 0, c=1, φ=0 E1 = E2

Incremental Shear strains

Modelización de anisotropía en macizos rocosos

Modelling Rock in Plaxis

Fluencia anisotrópica dentro de la mecánica del continuo • No hay “distancia” entre discontinuidades: siempre “existe” una discontinuidad en la posición desfavorable Jointed Rock Example Jointed Rock model, 2D Example • Limitación en model, 2D: sólo 2D es válido si las discontinuidades son normales al modelo α = 0° α = 30°

1 Jointed Rock model, 2D Example 1 nted Rock model, 2D Example

α1= 30°

(Waterman 2010)

(Waterman 2010)

Plastic points Plastic points

Incremental 5 displacements

= 0, c=1, φ=0 1 = E2

Incremental displacements

Incremental Incremental γ= 0,Juntas c=1, φ=0horizontales Shear strains displacements E1 = E2

Plastic points

Incremental Incremental Shear strains displacements

Plastic points

Juntas γ= 0, c=1, φ=0 E1 = E2

Inc She

Incremental

inclinadas Shear strains

γ= 0, c=1, φ=0 E1 = E2

Modelización de anisotropía en macizos rocosos

Discontinuidades explícitas CG2 - Buenos Aires, Argentina - Octobre 2010

CG2 - Buenos Aires,Superficies Argentina -pre-definidas Octobre 2010en el modelo

5

con propiedades resistentes propias

Jointed Ventajas Rock model, 2D Example

y otras estructuras bien α•1= Fallas 30° ted Rock model, 2D Example

°

caracterizadas, no “promediadas” • Ablandamiento (de discontunuidad) no induce dependencia de la malla Desventajas Plastic • Requiere caracterización mecánica points Incremental Plastic • Modelización difícil de superficies displacements points curvas y/o con puentes de roca Incremental

Incremental 6 displacements

γ= 0, c=1, φ=0 E1 = E2

Shear strains

Incremental Shear strains (SRK Consulting, Severin 2012)

= 0, c=1, φ=0 1 = E2

3

Modelización de anisotropía en macizos rocosos

demonstrate that the assignment of ubiquitous joint orientations at the zone level (from a known joint-orientation distribution) results in realistic rock mass behavior and can yield properties that are consistent with empirical techniques. The methodology detailed by Clark (2006) has been extended to FLAC3D to allow for the characterization of strength anisotropy and sample scale effects. Within the Subiquitous constitutive model, both matrix and joint properties are specified (see Fig. 1). In order for the UJRM testing methodology to be practical and honor existing rock mechanics relations, it has been assumed that the matrix and joint properties can be derived directly from the intact or SRM testing results. By modifying these input strength parameters, the calibration of Young’s Modulus, unconfined compressive strength (UCS), tensile strength and the softening behavior of different sample sizes, in different loading directions have been completed. In addition, SRM failure mechanisms within the UJRM samples also have been honored through the monitoring of progressive matrix degradation, joint slip and joint dislocation. An example of the damage propagation behaviors within a UJRM sample can be seen through the progressive degradation of matrix cohesion and ubiquitous joint-failure plots at various stages of UJRM UCS sample loading – illustrated in Figure 2.

Discrete Fracture Network (introducción)

7

(Sainsbury 2008)

Figure 1. UJRM model: matrix and joint properties.

Figure 2. Stages of damage within a UJRM specimen.

2.2 Establishment of a standard UJRM laboratory testing environment

Modelización de anisotropía en macizos rocosos

To date, SRM testing has been performed on one sample size that has been subjected to one stresspath loading condition that simulates the expected stress path in situ. This has made the material properties derived from this technique specific to one application. As discussed in Mas Ivars et al. (2008), the SRM methodology has been developed further to achieve calibration of the rock mass (a) in three opposing loading directions, and (b) at a number of different scales. This ensures that the material properties derived from the technique are not specific to one particular stress path and may

8

Modelos discontinuos: bloques en contacto

2

Mecánica del continuo dentro de cada bloque Teorías de contacto entre bloques Ventajas • Puede propagar fracturas (en contactos pre-definidos) • Permite modelar localización de deformaciones Desventajas • Bloques elásticos: puede bloquear • Bloques elastoplásticos: alto costo computacional (SRK Consulting, Severin 2012)

4

Modelización de anisotropía en macizos rocosos

Modelos discontinuos en gran escala: Chuquicamata Pared Oeste

UDEC model showing lithology, discontinuities and anual pit geometries. (Lorig and Calderón, 2002)

PFC2D model showing toppling on major structures (Cundall, 2007)

SLOPE MODEL model showing toppling on major structures (LOP, 2009)

Modelización de anisotropía en macizos rocosos

9

10

(Silva et al 2015)

El problema de la interpretación de los resultados

Macizo rocoso FS = 1.65

Juntas difusas FS = 1.17

DFN en FLAC3D FS = 0.97 (SRK Consulting, Severin 2014)

5