Cátedra de Climatología y Fenología Agrícolas
El Agua en la naturaleza El Ciclo del Agua
ELEMENTOS DEL TIEMPO • Radiación
solar
• Temperatura del aire
• Presión atmosférica • Viento • Humedad del aire
• Nubosidad • Precipitación • Evaporación ELEMENTOS DEL CLIMA
Estas variables meteorológicas analizadas a través de una serie larga de años (30 años o más) caracterizan el clima de un determinado lugar.
Propiedades e importancia del agua Aptitud
para formar puentes Hidrógeno
Gran calor específico de fusión y vaporización Adherencia a micelas coloidales Destacada acción solvente
Densidad máxima a 4ºC Incolora Alto grado de viscosidad, conductividad térmica y tensión superficial Componente de tejidos vivos (90% ó más)
Propiedades e importancia del agua Estructura funcional de la célula dependiente del contenido de agua
Vehículo de nutrientes para las plantas Responsabilidad en la turgencia celular Participación en reacciones metabólicas Medio propicio para reacciones de azúcares, proteínas y aminoácidos Fuente de átomos de Hidrógeno para la fotosíntesis
•El calentamiento y enfriamiento de las aguas es más lento que el de los suelos T° + Regular Menor oscilación térmica •En zonas con influencia terrestre tienen mayor oscilación térmica.
Predominan climas terrestres
Predominan climas con influencia oceánica
Ciclo del agua
Demanda y Oferta de Agua Valores estimados del equilibrio natural entre ganancia de agua en el Planeta
pérdida y
Superficie (km2)
Precipitación (km3)
Evaporación (km3)
Diferencia (km3)
361 x 106
41.3 x 104
44.9 x 104
-3,6 x 104
Tierra
149 x 106
9,8 x 104
6,2 x 104
3,6 x 104
Total
510 x 106
51,1 x 104
51,1 x 104
-
Componente
Océanos mares
y
Distribución en el mundo de las regiones según sus características hídricas y centros de población.
Esquema de los megaproyectos en estudio en EEUU y la ex URRSS
Montañas árticas de agua dulce
Los estados del agua en el ciclo hidrológico y sus componentes
Proceso endotérmico 80 cal g
Sólido
600 cal g
Líquido
Gaseoso
Proceso exotérmico
Fusión
Evaporación
Solidificación
Condensación Sublimación
El vapor de agua en la atmósfera Importancia de la humedad atmosférica: 1. Es fuente de todo fenómeno hidrometeorológico; 2. Regulador térmico de la atmósfera; 3. Factor decisivo en el “efecto invernáculo” ;
4. Genera variaciones considerables de la temperatura del aire; 5. Regula la pérdida de agua de la tierra a la atmósfera;
6. Da lugar a una clasificación de heladas: helada blanca helada negra
7. Tiene gran influencia en los rendimientos; 8. Se ha encontrado una alta relación entre diferentes niveles de humedad del aire con la aparición de numerosas enfermedades; 9. Puede provocar “aborto” en las flores por falta de fecundación; 10.Producen rajaduras en frutas;
11.Es de gran importancia en la situación de confort de los animales homeotermos; 12. Altos niveles de humedad acompañados de alta temperatura del aire son inadecuados para la formación de sacarosa de la caña de azúcar.
Relación entre temperatura del aire y humedad atmosférica
Temperatura del aire ºc
Humedad absoluta de saturación (gr/m3)
Tensión de saturación (mb)
0
4.85
6.10
4
6.37
8.13
8
8.29
10.73
12
10.69
14.03
16
13.65
18.16
20
17.31
23.37
24
21.80
29.82
28
27.30
37.78
30
30.40
42.43
40
51.45
73.78
50
83.10
123.40
Sobre agua
Sobre agua
Sobre hielo
-4
4.54
4.37
-8
3.35
3.09
2.86
2.60
-12
2.44
2.17
-16
1.76
1.51
1.25
1.03
-10
-20
2.36
1.07
Sobre hielo
2.14
0.89
Curva de saturación Tv (mb) 30 28 26 24 22 20 18 16 14 12 10 8 6 4 2
Fase sólida
Fase acuosa B
A Fase gaseosa
*
Q
m q
----------------------------------------------------------------------------------------20 -10 0 10 20 30
tº C
Contenido máximo de vapor sobre agua líquida y sobre hielo
superficie de suelo
Capa de cristales de hielo
-22ºC Capa de cristales de hielo y gotas sobreenfriadas 0ºC
Capa de gotitas de agua
Nube característica de zonas templadas
¿Cómo medimos la Humedad Atmosférica?
Psicrómetro Común
Psicrómetro de Assmann
Higrógrafo
Registra la cantidad de humedad que existe en el aire
Variaciones de la Tensión de Vapor Variación diaria de la T.V. T.V.
Zonas templadas y frías
Zonas tórridas
0
24 Horas
Variación anual de la Tensión de Vapor
Julio
Enero
Julio
Localidad
Máxima (mm)
Mínima (mm)
S. M. de Tucumán
17,2 (febrero)
7,5 (agosto)
Mendoza (cap)
13,6 (febrero)
5,3 (julio)
Bailoche (R:Negro)
9,4 (enero)
4,6 (junio)
Variación con la altura Localidad
Altitud m s.n.m.
T.V. media anual (mm)
S. S. de Jujuy
1.300
14,1
Humahuaca (Jujuy)
3.000
8.8
Variación por la latitud Localidad
T.V. mm
S. M. de Tucumán
12,5
C. Rivadavia (Chubut)
6,6
Ushuaia (T. del Fuego)
5,0
Variaciones de la Humedad Relativa Variación diaria H. R. %
0
12
24
Horas
Variación anual de la Humedad Relativa Régimen isohigro de lluvias H.R.%
Mínimo 67% enero Máximo 84% junio
Buenos Aires
JL
E
JL
Variación anual de la Humedad Relativa Régimen monzónico de lluvias H.R.%
Mínimo 60% sept Máximo 79% abr
S. M. de Tucumán
JL
E
JL
Variación anual de la Humedad Relativa Régimen mediterráneo de lluvias H.R.% Bariloche
JL
E
JL
Condensación atmosférica Aire impuro
Aire filtrado
Igual tºC
Criterio de estabilidad de las gotas de agua de las nubes La velocidad de caída de las gotas en una nube es función del: * tamaño de la gota * estado físico del agua
Nucleo 10 -6 cm
Niebla 5-20
Nubes 20-40
Gotas de lluvia hasta 4.500
Familias de nubes
Clasificación de las nubes Tipo de nubes
Géneros
Contenido
Altura (km)
Altas
Cirrus, cirrostratus, cirrocumulus
Hielo
6-12
Medias
Altocumulos, altostratus
Hielo y gotas sobreenfriada s
2-6
Bajas
Stratocumulus, nimbostratus, stratus
Gotas
0-2
Desarrollo vertical
Cumulonimbus ,cumulos
Hielo y gotas sobreenfriada s
0-12
Nube de tormenta con granizo Las flechas indican la dirección de las corrientes de aire dentro de la nube
Medición de la nubosidad Diferentes tipos de fajas del heliofanógrafo
invierno
verano
Otoño y primavera
Determinación de la altura de una nube con el conjunto telémetro – eclímetro
D A L
A = D sen
P
P’
E=V.T
NEFOSCOPIO
a
e
a
Medida de la velocidad y dirección de una nube
Precipitación Crecimiento de la gota de lluvia por captura directa (izquierda) y captura de estela (derecha)
Precipitación Teorías Formación de la gota de lluvia
Carga eléctrica de las nubes Temperatura de las gotas Movimiento de las gotas Tamaño de las gotas Presencia de los cristales de hielo
Pulverización de una gota de lluvia (izq.) y relación entre tamaño de la gota y su velocidad de caída (der.)
Vel de caída m/s 8 7 6
5 4 3 2 1
0.02
0.4
4.0
10 Tamaño de gota
Régimen monzónico (caso típico: Tucumán)
mm
mm
JI
E
JI
JI
E
JI
Régimen ecuatorial o isohigro (caso típico Mar del Plata) mm
mm
JI
E
JI
JI
E
JI
Régimen mediterráneo (caso típico Bariloche)
mm
mm
JI
E
JI
JI
E
JI
Erosión de la gota de lluvia en el suelo
Precipitación efectiva No toda el agua de lluvia que cae sobre la superficie del suelo puede realmente ser utilizada por las plantas. Parte del agua de lluvia se infiltra a través de la superficie y parte fluye sobre el suelo en forma de escorrentía superficial debido a la diferencia entre la velocidad de caída de las gotas y la velocidad de infiltración. Cuando la lluvia cesa, parte del agua que se encuentra en la superficie del suelo se evapora directamente a la atmósfera, mientras que el resto se infiltra lentamente en el interior del suelo. Del total del agua que se infiltra, parte percola por debajo de la zona de raíces, mientras que el resto permanece almacenada en dicha zona y podría ser utilizada por las plantas.
El agua de lluvia evaporada, la de percolación profunda y la de escorrentía superficial no pueden ser utilizadas por el cultivo, a la porción restante, almacenada en la zona de raíces se le denomina “precipitación efectiva” y resulta de gran importancia pues define el rendimiento del cultivo implantado. Si fuese necesario regar es la precipitación efectiva y no la precipitación total la que debe considerarse en el cálculo de necesidad de riego
En otras palabras, el término "precipitación efectiva" es utilizado para definir esa fracción de la lluvia que estará realmente disponible para satisfacer al menos parte de las necesidades de agua de las plantas. Precipitación efectiva= P ½ mensual x % de efectividad
100
Gráfico para obtener el % de efectividad pluvial en el cálculo de la lluvia efectiva % Efect 100 95
50
25
50
75
100
150
180
Precipitación ½mensual (mm)
Curva de Retención de Agua de Suelo Retención (atm) 15
0,3
Agua Higroscópica CM
HEq
Agua útil
Agua Gravitacional
Contenido de Hº de Suelo (%)
Contenido de humedad de suelo
Medición: Gravimetría, Tensiómetro, Bouyoucos
Estimación: Balance Hidrológico
Tensiómetro
Bouyoucos